Metamath Proof Explorer


Theorem atpointN

Description: The singleton of an atom is a point. (Contributed by NM, 14-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses ispoint.a
|- A = ( Atoms ` K )
ispoint.p
|- P = ( Points ` K )
Assertion atpointN
|- ( ( K e. D /\ X e. A ) -> { X } e. P )

Proof

Step Hyp Ref Expression
1 ispoint.a
 |-  A = ( Atoms ` K )
2 ispoint.p
 |-  P = ( Points ` K )
3 eqid
 |-  { X } = { X }
4 sneq
 |-  ( x = X -> { x } = { X } )
5 4 rspceeqv
 |-  ( ( X e. A /\ { X } = { X } ) -> E. x e. A { X } = { x } )
6 3 5 mpan2
 |-  ( X e. A -> E. x e. A { X } = { x } )
7 6 adantl
 |-  ( ( K e. D /\ X e. A ) -> E. x e. A { X } = { x } )
8 1 2 ispointN
 |-  ( K e. D -> ( { X } e. P <-> E. x e. A { X } = { x } ) )
9 8 adantr
 |-  ( ( K e. D /\ X e. A ) -> ( { X } e. P <-> E. x e. A { X } = { x } ) )
10 7 9 mpbird
 |-  ( ( K e. D /\ X e. A ) -> { X } e. P )