Step |
Hyp |
Ref |
Expression |
1 |
|
atpsub.a |
|- A = ( Atoms ` K ) |
2 |
|
atpsub.s |
|- S = ( PSubSp ` K ) |
3 |
|
ssid |
|- A C_ A |
4 |
|
ax-1 |
|- ( r e. A -> ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. A ) ) |
5 |
4
|
rgen |
|- A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. A ) |
6 |
5
|
rgen2w |
|- A. p e. A A. q e. A A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. A ) |
7 |
3 6
|
pm3.2i |
|- ( A C_ A /\ A. p e. A A. q e. A A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. A ) ) |
8 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
9 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
10 |
8 9 1 2
|
ispsubsp |
|- ( K e. V -> ( A e. S <-> ( A C_ A /\ A. p e. A A. q e. A A. r e. A ( r ( le ` K ) ( p ( join ` K ) q ) -> r e. A ) ) ) ) |
11 |
7 10
|
mpbiri |
|- ( K e. V -> A e. S ) |