Step |
Hyp |
Ref |
Expression |
1 |
|
elat2 |
|- ( B e. HAtoms <-> ( B e. CH /\ ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) ) ) |
2 |
|
sseq1 |
|- ( x = A -> ( x C_ B <-> A C_ B ) ) |
3 |
|
eqeq1 |
|- ( x = A -> ( x = B <-> A = B ) ) |
4 |
|
eqeq1 |
|- ( x = A -> ( x = 0H <-> A = 0H ) ) |
5 |
3 4
|
orbi12d |
|- ( x = A -> ( ( x = B \/ x = 0H ) <-> ( A = B \/ A = 0H ) ) ) |
6 |
2 5
|
imbi12d |
|- ( x = A -> ( ( x C_ B -> ( x = B \/ x = 0H ) ) <-> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
7 |
6
|
rspcv |
|- ( A e. CH -> ( A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
8 |
7
|
adantld |
|- ( A e. CH -> ( ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
9 |
8
|
adantld |
|- ( A e. CH -> ( ( B e. CH /\ ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) ) |
10 |
9
|
imp |
|- ( ( A e. CH /\ ( B e. CH /\ ( B =/= 0H /\ A. x e. CH ( x C_ B -> ( x = B \/ x = 0H ) ) ) ) ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) |
11 |
1 10
|
sylan2b |
|- ( ( A e. CH /\ B e. HAtoms ) -> ( A C_ B -> ( A = B \/ A = 0H ) ) ) |