| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							dfss2 | 
							 |-  ( A C_ B <-> ( A i^i B ) = A )  | 
						
						
							| 2 | 
							
								1
							 | 
							biimpi | 
							 |-  ( A C_ B -> ( A i^i B ) = A )  | 
						
						
							| 3 | 
							
								2
							 | 
							eleq1d | 
							 |-  ( A C_ B -> ( ( A i^i B ) e. HAtoms <-> A e. HAtoms ) )  | 
						
						
							| 4 | 
							
								3
							 | 
							biimprcd | 
							 |-  ( A e. HAtoms -> ( A C_ B -> ( A i^i B ) e. HAtoms ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B -> ( A i^i B ) e. HAtoms ) )  | 
						
						
							| 6 | 
							
								
							 | 
							incom | 
							 |-  ( A i^i B ) = ( B i^i A )  | 
						
						
							| 7 | 
							
								6
							 | 
							eleq1i | 
							 |-  ( ( A i^i B ) e. HAtoms <-> ( B i^i A ) e. HAtoms )  | 
						
						
							| 8 | 
							
								
							 | 
							atne0 | 
							 |-  ( ( B i^i A ) e. HAtoms -> ( B i^i A ) =/= 0H )  | 
						
						
							| 9 | 
							
								8
							 | 
							neneqd | 
							 |-  ( ( B i^i A ) e. HAtoms -> -. ( B i^i A ) = 0H )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							sylbi | 
							 |-  ( ( A i^i B ) e. HAtoms -> -. ( B i^i A ) = 0H )  | 
						
						
							| 11 | 
							
								
							 | 
							atnssm0 | 
							 |-  ( ( B e. CH /\ A e. HAtoms ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ancoms | 
							 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B <-> ( B i^i A ) = 0H ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							biimpd | 
							 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( -. A C_ B -> ( B i^i A ) = 0H ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							con1d | 
							 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( -. ( B i^i A ) = 0H -> A C_ B ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							syl5 | 
							 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( ( A i^i B ) e. HAtoms -> A C_ B ) )  | 
						
						
							| 16 | 
							
								5 15
							 | 
							impbid | 
							 |-  ( ( A e. HAtoms /\ B e. CH ) -> ( A C_ B <-> ( A i^i B ) e. HAtoms ) )  |