Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
|- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
2 |
|
fvex |
|- ( Vtx ` H ) e. _V |
3 |
|
fvex |
|- ( Edg ` H ) e. _V |
4 |
1
|
isausgr |
|- ( ( ( Vtx ` H ) e. _V /\ ( Edg ` H ) e. _V ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
5 |
2 3 4
|
mp2an |
|- ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
6 |
|
edgval |
|- ( Edg ` H ) = ran ( iEdg ` H ) |
7 |
6
|
a1i |
|- ( H e. W -> ( Edg ` H ) = ran ( iEdg ` H ) ) |
8 |
7
|
sseq1d |
|- ( H e. W -> ( ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } <-> ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
9 |
|
funfn |
|- ( Fun ( iEdg ` H ) <-> ( iEdg ` H ) Fn dom ( iEdg ` H ) ) |
10 |
9
|
biimpi |
|- ( Fun ( iEdg ` H ) -> ( iEdg ` H ) Fn dom ( iEdg ` H ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ Fun ( iEdg ` H ) ) -> ( iEdg ` H ) Fn dom ( iEdg ` H ) ) |
12 |
|
simp2 |
|- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ Fun ( iEdg ` H ) ) -> ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
13 |
|
df-f |
|- ( ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } <-> ( ( iEdg ` H ) Fn dom ( iEdg ` H ) /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
14 |
11 12 13
|
sylanbrc |
|- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ Fun ( iEdg ` H ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
15 |
14
|
3exp |
|- ( H e. W -> ( ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } -> ( Fun ( iEdg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
16 |
8 15
|
sylbid |
|- ( H e. W -> ( ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } -> ( Fun ( iEdg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
17 |
5 16
|
syl5bi |
|- ( H e. W -> ( ( Vtx ` H ) G ( Edg ` H ) -> ( Fun ( iEdg ` H ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
18 |
17
|
3imp |
|- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ Fun ( iEdg ` H ) ) -> ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
19 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
20 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
21 |
19 20
|
isumgrs |
|- ( H e. W -> ( H e. UMGraph <-> ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
22 |
21
|
3ad2ant1 |
|- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ Fun ( iEdg ` H ) ) -> ( H e. UMGraph <-> ( iEdg ` H ) : dom ( iEdg ` H ) --> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
23 |
18 22
|
mpbird |
|- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ Fun ( iEdg ` H ) ) -> H e. UMGraph ) |