Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
|- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
2 |
1
|
isausgr |
|- ( ( V e. X /\ E e. Y ) -> ( V G E <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
3 |
|
f1oi |
|- ( _I |` E ) : E -1-1-onto-> E |
4 |
|
dff1o5 |
|- ( ( _I |` E ) : E -1-1-onto-> E <-> ( ( _I |` E ) : E -1-1-> E /\ ran ( _I |` E ) = E ) ) |
5 |
|
f1ss |
|- ( ( ( _I |` E ) : E -1-1-> E /\ E C_ { x e. ~P V | ( # ` x ) = 2 } ) -> ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
6 |
|
dmresi |
|- dom ( _I |` E ) = E |
7 |
6
|
eqcomi |
|- E = dom ( _I |` E ) |
8 |
|
f1eq2 |
|- ( E = dom ( _I |` E ) -> ( ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
9 |
7 8
|
ax-mp |
|- ( ( _I |` E ) : E -1-1-> { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
10 |
5 9
|
sylib |
|- ( ( ( _I |` E ) : E -1-1-> E /\ E C_ { x e. ~P V | ( # ` x ) = 2 } ) -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) |
11 |
10
|
ex |
|- ( ( _I |` E ) : E -1-1-> E -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
12 |
11
|
a1d |
|- ( ( _I |` E ) : E -1-1-> E -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) |
13 |
12
|
adantr |
|- ( ( ( _I |` E ) : E -1-1-> E /\ ran ( _I |` E ) = E ) -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) |
14 |
4 13
|
sylbi |
|- ( ( _I |` E ) : E -1-1-onto-> E -> ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) ) |
15 |
3 14
|
ax-mp |
|- ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
16 |
|
df-f |
|- ( ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } <-> ( ( _I |` E ) Fn dom ( _I |` E ) /\ ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
17 |
|
rnresi |
|- ran ( _I |` E ) = E |
18 |
17
|
sseq1i |
|- ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } <-> E C_ { x e. ~P V | ( # ` x ) = 2 } ) |
19 |
18
|
biimpi |
|- ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) |
20 |
19
|
a1d |
|- ( ran ( _I |` E ) C_ { x e. ~P V | ( # ` x ) = 2 } -> ( ( V e. X /\ E e. Y ) -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
21 |
16 20
|
simplbiim |
|- ( ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } -> ( ( V e. X /\ E e. Y ) -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
22 |
|
f1f |
|- ( ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> ( _I |` E ) : dom ( _I |` E ) --> { x e. ~P V | ( # ` x ) = 2 } ) |
23 |
21 22
|
syl11 |
|- ( ( V e. X /\ E e. Y ) -> ( ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } -> E C_ { x e. ~P V | ( # ` x ) = 2 } ) ) |
24 |
15 23
|
impbid |
|- ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
25 |
|
resiexg |
|- ( E e. Y -> ( _I |` E ) e. _V ) |
26 |
|
opiedgfv |
|- ( ( V e. X /\ ( _I |` E ) e. _V ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
27 |
25 26
|
sylan2 |
|- ( ( V e. X /\ E e. Y ) -> ( iEdg ` <. V , ( _I |` E ) >. ) = ( _I |` E ) ) |
28 |
27
|
dmeqd |
|- ( ( V e. X /\ E e. Y ) -> dom ( iEdg ` <. V , ( _I |` E ) >. ) = dom ( _I |` E ) ) |
29 |
|
opvtxfv |
|- ( ( V e. X /\ ( _I |` E ) e. _V ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
30 |
25 29
|
sylan2 |
|- ( ( V e. X /\ E e. Y ) -> ( Vtx ` <. V , ( _I |` E ) >. ) = V ) |
31 |
30
|
pweqd |
|- ( ( V e. X /\ E e. Y ) -> ~P ( Vtx ` <. V , ( _I |` E ) >. ) = ~P V ) |
32 |
31
|
rabeqdv |
|- ( ( V e. X /\ E e. Y ) -> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } = { x e. ~P V | ( # ` x ) = 2 } ) |
33 |
27 28 32
|
f1eq123d |
|- ( ( V e. X /\ E e. Y ) -> ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> ( _I |` E ) : dom ( _I |` E ) -1-1-> { x e. ~P V | ( # ` x ) = 2 } ) ) |
34 |
24 33
|
bitr4d |
|- ( ( V e. X /\ E e. Y ) -> ( E C_ { x e. ~P V | ( # ` x ) = 2 } <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) ) |
35 |
|
opex |
|- <. V , ( _I |` E ) >. e. _V |
36 |
|
eqid |
|- ( Vtx ` <. V , ( _I |` E ) >. ) = ( Vtx ` <. V , ( _I |` E ) >. ) |
37 |
|
eqid |
|- ( iEdg ` <. V , ( _I |` E ) >. ) = ( iEdg ` <. V , ( _I |` E ) >. ) |
38 |
36 37
|
isusgrs |
|- ( <. V , ( _I |` E ) >. e. _V -> ( <. V , ( _I |` E ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) ) |
39 |
35 38
|
ax-mp |
|- ( <. V , ( _I |` E ) >. e. USGraph <-> ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } ) |
40 |
39
|
bicomi |
|- ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> <. V , ( _I |` E ) >. e. USGraph ) |
41 |
40
|
a1i |
|- ( ( V e. X /\ E e. Y ) -> ( ( iEdg ` <. V , ( _I |` E ) >. ) : dom ( iEdg ` <. V , ( _I |` E ) >. ) -1-1-> { x e. ~P ( Vtx ` <. V , ( _I |` E ) >. ) | ( # ` x ) = 2 } <-> <. V , ( _I |` E ) >. e. USGraph ) ) |
42 |
2 34 41
|
3bitrd |
|- ( ( V e. X /\ E e. Y ) -> ( V G E <-> <. V , ( _I |` E ) >. e. USGraph ) ) |