Step |
Hyp |
Ref |
Expression |
1 |
|
ausgr.1 |
|- G = { <. v , e >. | e C_ { x e. ~P v | ( # ` x ) = 2 } } |
2 |
|
ausgrusgri.1 |
|- O = { f | f : dom f -1-1-> ran f } |
3 |
|
fvex |
|- ( Vtx ` H ) e. _V |
4 |
|
fvex |
|- ( Edg ` H ) e. _V |
5 |
1
|
isausgr |
|- ( ( ( Vtx ` H ) e. _V /\ ( Edg ` H ) e. _V ) -> ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
6 |
3 4 5
|
mp2an |
|- ( ( Vtx ` H ) G ( Edg ` H ) <-> ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
7 |
|
edgval |
|- ( Edg ` H ) = ran ( iEdg ` H ) |
8 |
7
|
a1i |
|- ( H e. W -> ( Edg ` H ) = ran ( iEdg ` H ) ) |
9 |
8
|
sseq1d |
|- ( H e. W -> ( ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } <-> ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
10 |
2
|
eleq2i |
|- ( ( iEdg ` H ) e. O <-> ( iEdg ` H ) e. { f | f : dom f -1-1-> ran f } ) |
11 |
|
fvex |
|- ( iEdg ` H ) e. _V |
12 |
|
id |
|- ( f = ( iEdg ` H ) -> f = ( iEdg ` H ) ) |
13 |
|
dmeq |
|- ( f = ( iEdg ` H ) -> dom f = dom ( iEdg ` H ) ) |
14 |
|
rneq |
|- ( f = ( iEdg ` H ) -> ran f = ran ( iEdg ` H ) ) |
15 |
12 13 14
|
f1eq123d |
|- ( f = ( iEdg ` H ) -> ( f : dom f -1-1-> ran f <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) ) |
16 |
11 15
|
elab |
|- ( ( iEdg ` H ) e. { f | f : dom f -1-1-> ran f } <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) |
17 |
10 16
|
sylbb |
|- ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) |
18 |
17
|
3ad2ant3 |
|- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ ( iEdg ` H ) e. O ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) ) |
19 |
|
simp2 |
|- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ ( iEdg ` H ) e. O ) -> ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
20 |
|
f1ssr |
|- ( ( ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> ran ( iEdg ` H ) /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
21 |
18 19 20
|
syl2anc |
|- ( ( H e. W /\ ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } /\ ( iEdg ` H ) e. O ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
22 |
21
|
3exp |
|- ( H e. W -> ( ran ( iEdg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } -> ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
23 |
9 22
|
sylbid |
|- ( H e. W -> ( ( Edg ` H ) C_ { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } -> ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
24 |
6 23
|
syl5bi |
|- ( H e. W -> ( ( Vtx ` H ) G ( Edg ` H ) -> ( ( iEdg ` H ) e. O -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) ) |
25 |
24
|
3imp |
|- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) |
26 |
|
eqid |
|- ( Vtx ` H ) = ( Vtx ` H ) |
27 |
|
eqid |
|- ( iEdg ` H ) = ( iEdg ` H ) |
28 |
26 27
|
isusgrs |
|- ( H e. W -> ( H e. USGraph <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
29 |
28
|
3ad2ant1 |
|- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> ( H e. USGraph <-> ( iEdg ` H ) : dom ( iEdg ` H ) -1-1-> { x e. ~P ( Vtx ` H ) | ( # ` x ) = 2 } ) ) |
30 |
25 29
|
mpbird |
|- ( ( H e. W /\ ( Vtx ` H ) G ( Edg ` H ) /\ ( iEdg ` H ) e. O ) -> H e. USGraph ) |