| Step | Hyp | Ref | Expression | 
						
							| 1 |  | avglt2 |  |-  ( ( B e. RR /\ A e. RR ) -> ( B < A <-> ( ( B + A ) / 2 ) < A ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( A e. RR /\ B e. RR ) -> ( B < A <-> ( ( B + A ) / 2 ) < A ) ) | 
						
							| 3 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 4 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 5 |  | addcom |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) | 
						
							| 6 | 3 4 5 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) = ( ( B + A ) / 2 ) ) | 
						
							| 8 | 7 | breq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < A <-> ( ( B + A ) / 2 ) < A ) ) | 
						
							| 9 | 2 8 | bitr4d |  |-  ( ( A e. RR /\ B e. RR ) -> ( B < A <-> ( ( A + B ) / 2 ) < A ) ) | 
						
							| 10 | 9 | notbid |  |-  ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> -. ( ( A + B ) / 2 ) < A ) ) | 
						
							| 11 |  | lenlt |  |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) | 
						
							| 12 |  | readdcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) | 
						
							| 13 |  | rehalfcl |  |-  ( ( A + B ) e. RR -> ( ( A + B ) / 2 ) e. RR ) | 
						
							| 14 | 12 13 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) | 
						
							| 15 |  | lenlt |  |-  ( ( A e. RR /\ ( ( A + B ) / 2 ) e. RR ) -> ( A <_ ( ( A + B ) / 2 ) <-> -. ( ( A + B ) / 2 ) < A ) ) | 
						
							| 16 | 14 15 | syldan |  |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ ( ( A + B ) / 2 ) <-> -. ( ( A + B ) / 2 ) < A ) ) | 
						
							| 17 | 10 11 16 | 3bitr4d |  |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> A <_ ( ( A + B ) / 2 ) ) ) |