| Step |
Hyp |
Ref |
Expression |
| 1 |
|
avglt1 |
|- ( ( B e. RR /\ A e. RR ) -> ( B < A <-> B < ( ( B + A ) / 2 ) ) ) |
| 2 |
1
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> B < ( ( B + A ) / 2 ) ) ) |
| 3 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 4 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 5 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
| 6 |
3 4 5
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) = ( B + A ) ) |
| 7 |
6
|
oveq1d |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) = ( ( B + A ) / 2 ) ) |
| 8 |
7
|
breq2d |
|- ( ( A e. RR /\ B e. RR ) -> ( B < ( ( A + B ) / 2 ) <-> B < ( ( B + A ) / 2 ) ) ) |
| 9 |
2 8
|
bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( B < A <-> B < ( ( A + B ) / 2 ) ) ) |
| 10 |
9
|
notbid |
|- ( ( A e. RR /\ B e. RR ) -> ( -. B < A <-> -. B < ( ( A + B ) / 2 ) ) ) |
| 11 |
|
lenlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
| 12 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 13 |
|
rehalfcl |
|- ( ( A + B ) e. RR -> ( ( A + B ) / 2 ) e. RR ) |
| 14 |
12 13
|
syl |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) / 2 ) e. RR ) |
| 15 |
|
lenlt |
|- ( ( ( ( A + B ) / 2 ) e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) <_ B <-> -. B < ( ( A + B ) / 2 ) ) ) |
| 16 |
14 15
|
sylancom |
|- ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) <_ B <-> -. B < ( ( A + B ) / 2 ) ) ) |
| 17 |
10 11 16
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> ( ( A + B ) / 2 ) <_ B ) ) |