| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 2 | 1 | recnd |  |-  ( ( A e. RR /\ B e. RR ) -> B e. CC ) | 
						
							| 3 |  | 2times |  |-  ( B e. CC -> ( 2 x. B ) = ( B + B ) ) | 
						
							| 4 | 2 3 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( 2 x. B ) = ( B + B ) ) | 
						
							| 5 | 4 | breq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) < ( 2 x. B ) <-> ( A + B ) < ( B + B ) ) ) | 
						
							| 6 |  | readdcl |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) | 
						
							| 7 |  | 2re |  |-  2 e. RR | 
						
							| 8 |  | 2pos |  |-  0 < 2 | 
						
							| 9 | 7 8 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 10 | 9 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 11 |  | ltdivmul |  |-  ( ( ( A + B ) e. RR /\ B e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( ( A + B ) / 2 ) < B <-> ( A + B ) < ( 2 x. B ) ) ) | 
						
							| 12 | 6 1 10 11 | syl3anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + B ) / 2 ) < B <-> ( A + B ) < ( 2 x. B ) ) ) | 
						
							| 13 |  | ltadd1 |  |-  ( ( A e. RR /\ B e. RR /\ B e. RR ) -> ( A < B <-> ( A + B ) < ( B + B ) ) ) | 
						
							| 14 | 13 | 3anidm23 |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( A + B ) < ( B + B ) ) ) | 
						
							| 15 | 5 12 14 | 3bitr4rd |  |-  ( ( A e. RR /\ B e. RR ) -> ( A < B <-> ( ( A + B ) / 2 ) < B ) ) |