Description: The binary Goldbach conjecture is valid for all even numbers less than or equal to 4x10^18, see section 2 in OeSilva p. 2042. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020) (Revised by AV, 9-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-bgbltosilva | |- ( ( N e. Even /\ 4 < N /\ N <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) -> N e. GoldbachEven ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cN | |- N | |
| 1 | ceven | |- Even | |
| 2 | 0 1 | wcel | |- N e. Even | 
| 3 | c4 | |- 4 | |
| 4 | clt | |- < | |
| 5 | 3 0 4 | wbr | |- 4 < N | 
| 6 | cle | |- <_ | |
| 7 | cmul | |- x. | |
| 8 | c1 | |- 1 | |
| 9 | cc0 | |- 0 | |
| 10 | 8 9 | cdc | |- ; 1 0 | 
| 11 | cexp | |- ^ | |
| 12 | c8 | |- 8 | |
| 13 | 8 12 | cdc | |- ; 1 8 | 
| 14 | 10 13 11 | co | |- ( ; 1 0 ^ ; 1 8 ) | 
| 15 | 3 14 7 | co | |- ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) | 
| 16 | 0 15 6 | wbr | |- N <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) | 
| 17 | 2 5 16 | w3a | |- ( N e. Even /\ 4 < N /\ N <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) | 
| 18 | cgbe | |- GoldbachEven | |
| 19 | 0 18 | wcel | |- N e. GoldbachEven | 
| 20 | 17 19 | wi | |- ( ( N e. Even /\ 4 < N /\ N <_ ( 4 x. ( ; 1 0 ^ ; 1 8 ) ) ) -> N e. GoldbachEven ) |