Description: Distributive law for inner product. Postulate (S2) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-his2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | chba | |- ~H |
|
2 | 0 1 | wcel | |- A e. ~H |
3 | cB | |- B |
|
4 | 3 1 | wcel | |- B e. ~H |
5 | cC | |- C |
|
6 | 5 1 | wcel | |- C e. ~H |
7 | 2 4 6 | w3a | |- ( A e. ~H /\ B e. ~H /\ C e. ~H ) |
8 | cva | |- +h |
|
9 | 0 3 8 | co | |- ( A +h B ) |
10 | csp | |- .ih |
|
11 | 9 5 10 | co | |- ( ( A +h B ) .ih C ) |
12 | 0 5 10 | co | |- ( A .ih C ) |
13 | caddc | |- + |
|
14 | 3 5 10 | co | |- ( B .ih C ) |
15 | 12 14 13 | co | |- ( ( A .ih C ) + ( B .ih C ) ) |
16 | 11 15 | wceq | |- ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) |
17 | 7 16 | wi | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) ) |