Metamath Proof Explorer


Axiom ax-his2

Description: Distributive law for inner product. Postulate (S2) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-his2
|- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 chba
 |-  ~H
2 0 1 wcel
 |-  A e. ~H
3 cB
 |-  B
4 3 1 wcel
 |-  B e. ~H
5 cC
 |-  C
6 5 1 wcel
 |-  C e. ~H
7 2 4 6 w3a
 |-  ( A e. ~H /\ B e. ~H /\ C e. ~H )
8 cva
 |-  +h
9 0 3 8 co
 |-  ( A +h B )
10 csp
 |-  .ih
11 9 5 10 co
 |-  ( ( A +h B ) .ih C )
12 0 5 10 co
 |-  ( A .ih C )
13 caddc
 |-  +
14 3 5 10 co
 |-  ( B .ih C )
15 12 14 13 co
 |-  ( ( A .ih C ) + ( B .ih C ) )
16 11 15 wceq
 |-  ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) )
17 7 16 wi
 |-  ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) )