Description: Distributive law for inner product. Postulate (S2) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-his2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cA | |- A | |
| 1 | chba | |- ~H | |
| 2 | 0 1 | wcel | |- A e. ~H | 
| 3 | cB | |- B | |
| 4 | 3 1 | wcel | |- B e. ~H | 
| 5 | cC | |- C | |
| 6 | 5 1 | wcel | |- C e. ~H | 
| 7 | 2 4 6 | w3a | |- ( A e. ~H /\ B e. ~H /\ C e. ~H ) | 
| 8 | cva | |- +h | |
| 9 | 0 3 8 | co | |- ( A +h B ) | 
| 10 | csp | |- .ih | |
| 11 | 9 5 10 | co | |- ( ( A +h B ) .ih C ) | 
| 12 | 0 5 10 | co | |- ( A .ih C ) | 
| 13 | caddc | |- + | |
| 14 | 3 5 10 | co | |- ( B .ih C ) | 
| 15 | 12 14 13 | co | |- ( ( A .ih C ) + ( B .ih C ) ) | 
| 16 | 11 15 | wceq | |- ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) | 
| 17 | 7 16 | wi | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) .ih C ) = ( ( A .ih C ) + ( B .ih C ) ) ) |