Description: Identity law for inner product. Postulate (S4) of Beran p. 95. (Contributed by NM, 29-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-his4 | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | chba | |- ~H |
|
2 | 0 1 | wcel | |- A e. ~H |
3 | c0v | |- 0h |
|
4 | 0 3 | wne | |- A =/= 0h |
5 | 2 4 | wa | |- ( A e. ~H /\ A =/= 0h ) |
6 | cc0 | |- 0 |
|
7 | clt | |- < |
|
8 | csp | |- .ih |
|
9 | 0 0 8 | co | |- ( A .ih A ) |
10 | 6 9 7 | wbr | |- 0 < ( A .ih A ) |
11 | 5 10 | wi | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( A .ih A ) ) |