Metamath Proof Explorer


Axiom ax-hvaddid

Description: Addition with the zero vector. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvaddid
|- ( A e. ~H -> ( A +h 0h ) = A )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 chba
 |-  ~H
2 0 1 wcel
 |-  A e. ~H
3 cva
 |-  +h
4 c0v
 |-  0h
5 0 4 3 co
 |-  ( A +h 0h )
6 5 0 wceq
 |-  ( A +h 0h ) = A
7 2 6 wi
 |-  ( A e. ~H -> ( A +h 0h ) = A )