Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-hvdistr1 | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | cc | |- CC |
|
2 | 0 1 | wcel | |- A e. CC |
3 | cB | |- B |
|
4 | chba | |- ~H |
|
5 | 3 4 | wcel | |- B e. ~H |
6 | cC | |- C |
|
7 | 6 4 | wcel | |- C e. ~H |
8 | 2 5 7 | w3a | |- ( A e. CC /\ B e. ~H /\ C e. ~H ) |
9 | csm | |- .h |
|
10 | cva | |- +h |
|
11 | 3 6 10 | co | |- ( B +h C ) |
12 | 0 11 9 | co | |- ( A .h ( B +h C ) ) |
13 | 0 3 9 | co | |- ( A .h B ) |
14 | 0 6 9 | co | |- ( A .h C ) |
15 | 13 14 10 | co | |- ( ( A .h B ) +h ( A .h C ) ) |
16 | 12 15 | wceq | |- ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) ) |
17 | 8 16 | wi | |- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) ) ) |