Metamath Proof Explorer


Axiom ax-hvdistr1

Description: Scalar multiplication distributive law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvdistr1
|- ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cc
 |-  CC
2 0 1 wcel
 |-  A e. CC
3 cB
 |-  B
4 chba
 |-  ~H
5 3 4 wcel
 |-  B e. ~H
6 cC
 |-  C
7 6 4 wcel
 |-  C e. ~H
8 2 5 7 w3a
 |-  ( A e. CC /\ B e. ~H /\ C e. ~H )
9 csm
 |-  .h
10 cva
 |-  +h
11 3 6 10 co
 |-  ( B +h C )
12 0 11 9 co
 |-  ( A .h ( B +h C ) )
13 0 3 9 co
 |-  ( A .h B )
14 0 6 9 co
 |-  ( A .h C )
15 13 14 10 co
 |-  ( ( A .h B ) +h ( A .h C ) )
16 12 15 wceq
 |-  ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) )
17 8 16 wi
 |-  ( ( A e. CC /\ B e. ~H /\ C e. ~H ) -> ( A .h ( B +h C ) ) = ( ( A .h B ) +h ( A .h C ) ) )