Description: Scalar multiplication distributive law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-hvdistr2 | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A + B ) .h C ) = ( ( A .h C ) +h ( B .h C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cc | |- CC |
|
| 2 | 0 1 | wcel | |- A e. CC |
| 3 | cB | |- B |
|
| 4 | 3 1 | wcel | |- B e. CC |
| 5 | cC | |- C |
|
| 6 | chba | |- ~H |
|
| 7 | 5 6 | wcel | |- C e. ~H |
| 8 | 2 4 7 | w3a | |- ( A e. CC /\ B e. CC /\ C e. ~H ) |
| 9 | caddc | |- + |
|
| 10 | 0 3 9 | co | |- ( A + B ) |
| 11 | csm | |- .h |
|
| 12 | 10 5 11 | co | |- ( ( A + B ) .h C ) |
| 13 | 0 5 11 | co | |- ( A .h C ) |
| 14 | cva | |- +h |
|
| 15 | 3 5 11 | co | |- ( B .h C ) |
| 16 | 13 15 14 | co | |- ( ( A .h C ) +h ( B .h C ) ) |
| 17 | 12 16 | wceq | |- ( ( A + B ) .h C ) = ( ( A .h C ) +h ( B .h C ) ) |
| 18 | 8 17 | wi | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A + B ) .h C ) = ( ( A .h C ) +h ( B .h C ) ) ) |