Metamath Proof Explorer


Axiom ax-hvdistr2

Description: Scalar multiplication distributive law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvdistr2
|- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A + B ) .h C ) = ( ( A .h C ) +h ( B .h C ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cc
 |-  CC
2 0 1 wcel
 |-  A e. CC
3 cB
 |-  B
4 3 1 wcel
 |-  B e. CC
5 cC
 |-  C
6 chba
 |-  ~H
7 5 6 wcel
 |-  C e. ~H
8 2 4 7 w3a
 |-  ( A e. CC /\ B e. CC /\ C e. ~H )
9 caddc
 |-  +
10 0 3 9 co
 |-  ( A + B )
11 csm
 |-  .h
12 10 5 11 co
 |-  ( ( A + B ) .h C )
13 0 5 11 co
 |-  ( A .h C )
14 cva
 |-  +h
15 3 5 11 co
 |-  ( B .h C )
16 13 15 14 co
 |-  ( ( A .h C ) +h ( B .h C ) )
17 12 16 wceq
 |-  ( ( A + B ) .h C ) = ( ( A .h C ) +h ( B .h C ) )
18 8 17 wi
 |-  ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A + B ) .h C ) = ( ( A .h C ) +h ( B .h C ) ) )