Metamath Proof Explorer


Axiom ax-hvmul0

Description: Scalar multiplication by zero. We can derive the existence of the negative of a vector from this axiom (see hvsubid and hvsubval ). (Contributed by NM, 29-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvmul0
|- ( A e. ~H -> ( 0 .h A ) = 0h )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 chba
 |-  ~H
2 0 1 wcel
 |-  A e. ~H
3 cc0
 |-  0
4 csm
 |-  .h
5 3 0 4 co
 |-  ( 0 .h A )
6 c0v
 |-  0h
7 5 6 wceq
 |-  ( 0 .h A ) = 0h
8 2 7 wi
 |-  ( A e. ~H -> ( 0 .h A ) = 0h )