Description: Scalar multiplication associative law. (Contributed by NM, 30-May-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-hvmulass | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | cc | |- CC |
|
2 | 0 1 | wcel | |- A e. CC |
3 | cB | |- B |
|
4 | 3 1 | wcel | |- B e. CC |
5 | cC | |- C |
|
6 | chba | |- ~H |
|
7 | 5 6 | wcel | |- C e. ~H |
8 | 2 4 7 | w3a | |- ( A e. CC /\ B e. CC /\ C e. ~H ) |
9 | cmul | |- x. |
|
10 | 0 3 9 | co | |- ( A x. B ) |
11 | csm | |- .h |
|
12 | 10 5 11 | co | |- ( ( A x. B ) .h C ) |
13 | 3 5 11 | co | |- ( B .h C ) |
14 | 0 13 11 | co | |- ( A .h ( B .h C ) ) |
15 | 12 14 | wceq | |- ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) |
16 | 8 15 | wi | |- ( ( A e. CC /\ B e. CC /\ C e. ~H ) -> ( ( A x. B ) .h C ) = ( A .h ( B .h C ) ) ) |