Metamath Proof Explorer


Axiom ax-hvmulid

Description: Scalar multiplication by one. (Contributed by NM, 30-May-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvmulid
|- ( A e. ~H -> ( 1 .h A ) = A )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 chba
 |-  ~H
2 0 1 wcel
 |-  A e. ~H
3 c1
 |-  1
4 csm
 |-  .h
5 3 0 4 co
 |-  ( 1 .h A )
6 5 0 wceq
 |-  ( 1 .h A ) = A
7 2 6 wi
 |-  ( A e. ~H -> ( 1 .h A ) = A )