Description: Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, justified by Theorem axmulcom . Proofs should normally use mulcom instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-mulcom | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cc | |- CC |
|
| 2 | 0 1 | wcel | |- A e. CC |
| 3 | cB | |- B |
|
| 4 | 3 1 | wcel | |- B e. CC |
| 5 | 2 4 | wa | |- ( A e. CC /\ B e. CC ) |
| 6 | cmul | |- x. |
|
| 7 | 0 3 6 | co | |- ( A x. B ) |
| 8 | 3 0 6 | co | |- ( B x. A ) |
| 9 | 7 8 | wceq | |- ( A x. B ) = ( B x. A ) |
| 10 | 5 9 | wi | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) = ( B x. A ) ) |