Metamath Proof Explorer


Axiom ax-nul

Description: The Null Set Axiom of ZF set theory. It was derived as axnul above and is therefore redundant, but we state it as a separate axiom here so that its uses can be identified more easily. (Contributed by NM, 7-Aug-2003)

Ref Expression
Assertion ax-nul
|- E. x A. y -. y e. x

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 vy
 |-  y
2 1 cv
 |-  y
3 0 cv
 |-  x
4 2 3 wcel
 |-  y e. x
5 4 wn
 |-  -. y e. x
6 5 1 wal
 |-  A. y -. y e. x
7 6 0 wex
 |-  E. x A. y -. y e. x