Description: Axiom of Power Sets. An axiom of Zermelo-Fraenkel set theory. It states that a set y exists that includes the power set of a given set x i.e. contains every subset of x . The variant axpow2 uses explicit subset notation. A version using class notation is pwex . (Contributed by NM, 21-Jun-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-pow | |- E. y A. z ( A. w ( w e. z -> w e. x ) -> z e. y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | vy | |- y |
|
| 1 | vz | |- z |
|
| 2 | vw | |- w |
|
| 3 | 2 | cv | |- w |
| 4 | 1 | cv | |- z |
| 5 | 3 4 | wcel | |- w e. z |
| 6 | vx | |- x |
|
| 7 | 6 | cv | |- x |
| 8 | 3 7 | wcel | |- w e. x |
| 9 | 5 8 | wi | |- ( w e. z -> w e. x ) |
| 10 | 9 2 | wal | |- A. w ( w e. z -> w e. x ) |
| 11 | 0 | cv | |- y |
| 12 | 4 11 | wcel | |- z e. y |
| 13 | 10 12 | wi | |- ( A. w ( w e. z -> w e. x ) -> z e. y ) |
| 14 | 13 1 | wal | |- A. z ( A. w ( w e. z -> w e. x ) -> z e. y ) |
| 15 | 14 0 | wex | |- E. y A. z ( A. w ( w e. z -> w e. x ) -> z e. y ) |