Description: Axiom of Regularity. An axiom of Zermelo-Fraenkel set theory. Also called the Axiom of Foundation. A rather non-intuitive axiom that denies more than it asserts, it states (in the form of zfreg ) that every nonempty set contains a set disjoint from itself. One consequence is that it denies the existence of a set containing itself ( elirrv ). A stronger version that works for proper classes is proved as zfregs . (Contributed by NM, 14-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-reg | |- ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vy | |- y |
|
1 | 0 | cv | |- y |
2 | vx | |- x |
|
3 | 2 | cv | |- x |
4 | 1 3 | wcel | |- y e. x |
5 | 4 0 | wex | |- E. y y e. x |
6 | vz | |- z |
|
7 | 6 | cv | |- z |
8 | 7 1 | wcel | |- z e. y |
9 | 7 3 | wcel | |- z e. x |
10 | 9 | wn | |- -. z e. x |
11 | 8 10 | wi | |- ( z e. y -> -. z e. x ) |
12 | 11 6 | wal | |- A. z ( z e. y -> -. z e. x ) |
13 | 4 12 | wa | |- ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) |
14 | 13 0 | wex | |- E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) |
15 | 5 14 | wi | |- ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) ) |