Metamath Proof Explorer


Axiom ax-reg

Description: Axiom of Regularity. An axiom of Zermelo-Fraenkel set theory. Also called the Axiom of Foundation. A rather non-intuitive axiom that denies more than it asserts, it states (in the form of zfreg ) that every nonempty set contains a set disjoint from itself. One consequence is that it denies the existence of a set containing itself ( elirrv ). A stronger version that works for proper classes is proved as zfregs . (Contributed by NM, 14-Aug-1993)

Ref Expression
Assertion ax-reg
|- ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy
 |-  y
1 0 cv
 |-  y
2 vx
 |-  x
3 2 cv
 |-  x
4 1 3 wcel
 |-  y e. x
5 4 0 wex
 |-  E. y y e. x
6 vz
 |-  z
7 6 cv
 |-  z
8 7 1 wcel
 |-  z e. y
9 7 3 wcel
 |-  z e. x
10 9 wn
 |-  -. z e. x
11 8 10 wi
 |-  ( z e. y -> -. z e. x )
12 11 6 wal
 |-  A. z ( z e. y -> -. z e. x )
13 4 12 wa
 |-  ( y e. x /\ A. z ( z e. y -> -. z e. x ) )
14 13 0 wex
 |-  E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) )
15 5 14 wi
 |-  ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) )