Metamath Proof Explorer


Axiom ax-ros335

Description: Theorem 12. of RosserSchoenfeld p. 71. Theorem chpo1ubb states that the psi function is bounded by a linear term; this axiom postulates an upper bound for that linear term. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion ax-ros335
|- A. x e. RR+ ( psi ` x ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 crp
 |-  RR+
2 cchp
 |-  psi
3 0 cv
 |-  x
4 3 2 cfv
 |-  ( psi ` x )
5 clt
 |-  <
6 c1
 |-  1
7 cdp
 |-  .
8 cc0
 |-  0
9 c3
 |-  3
10 c8
 |-  8
11 10 9 cdp2
 |-  _ 8 3
12 10 11 cdp2
 |-  _ 8 _ 8 3
13 9 12 cdp2
 |-  _ 3 _ 8 _ 8 3
14 8 13 cdp2
 |-  _ 0 _ 3 _ 8 _ 8 3
15 6 14 7 co
 |-  ( 1 . _ 0 _ 3 _ 8 _ 8 3 )
16 cmul
 |-  x.
17 15 3 16 co
 |-  ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x )
18 4 17 5 wbr
 |-  ( psi ` x ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x )
19 18 0 1 wral
 |-  A. x e. RR+ ( psi ` x ) < ( ( 1 . _ 0 _ 3 _ 8 _ 8 3 ) x. x )