Metamath Proof Explorer


Axiom ax-ros336

Description: Theorem 13. of RosserSchoenfeld p. 71. Theorem chpchtlim states that the psi and theta function are asymtotic to each other; this axiom postulates an upper bound for their difference. This is stated as an axiom until a formal proof can be provided. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion ax-ros336
|- A. x e. RR+ ( ( psi ` x ) - ( theta ` x ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 crp
 |-  RR+
2 cchp
 |-  psi
3 0 cv
 |-  x
4 3 2 cfv
 |-  ( psi ` x )
5 cmin
 |-  -
6 ccht
 |-  theta
7 3 6 cfv
 |-  ( theta ` x )
8 4 7 5 co
 |-  ( ( psi ` x ) - ( theta ` x ) )
9 clt
 |-  <
10 c1
 |-  1
11 cdp
 |-  .
12 c4
 |-  4
13 c2
 |-  2
14 c6
 |-  6
15 14 13 cdp2
 |-  _ 6 2
16 13 15 cdp2
 |-  _ 2 _ 6 2
17 12 16 cdp2
 |-  _ 4 _ 2 _ 6 2
18 10 17 11 co
 |-  ( 1 . _ 4 _ 2 _ 6 2 )
19 cmul
 |-  x.
20 csqrt
 |-  sqrt
21 3 20 cfv
 |-  ( sqrt ` x )
22 18 21 19 co
 |-  ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) )
23 8 22 9 wbr
 |-  ( ( psi ` x ) - ( theta ` x ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) )
24 23 0 1 wral
 |-  A. x e. RR+ ( ( psi ` x ) - ( theta ` x ) ) < ( ( 1 . _ 4 _ 2 _ 6 2 ) x. ( sqrt ` x ) )