Metamath Proof Explorer


Axiom ax-rrecex

Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex . (Contributed by Eric Schmidt, 11-Apr-2007)

Ref Expression
Assertion ax-rrecex
|- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cr
 |-  RR
2 0 1 wcel
 |-  A e. RR
3 cc0
 |-  0
4 0 3 wne
 |-  A =/= 0
5 2 4 wa
 |-  ( A e. RR /\ A =/= 0 )
6 vx
 |-  x
7 cmul
 |-  x.
8 6 cv
 |-  x
9 0 8 7 co
 |-  ( A x. x )
10 c1
 |-  1
11 9 10 wceq
 |-  ( A x. x ) = 1
12 11 6 1 wrex
 |-  E. x e. RR ( A x. x ) = 1
13 5 12 wi
 |-  ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 )