Description: Existence of reciprocal of nonzero real number. Axiom 16 of 22 for real and complex numbers, justified by Theorem axrrecex . (Contributed by Eric Schmidt, 11-Apr-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-rrecex | |- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cA | |- A |
|
1 | cr | |- RR |
|
2 | 0 1 | wcel | |- A e. RR |
3 | cc0 | |- 0 |
|
4 | 0 3 | wne | |- A =/= 0 |
5 | 2 4 | wa | |- ( A e. RR /\ A =/= 0 ) |
6 | vx | |- x |
|
7 | cmul | |- x. |
|
8 | 6 | cv | |- x |
9 | 0 8 7 | co | |- ( A x. x ) |
10 | c1 | |- 1 |
|
11 | 9 10 | wceq | |- ( A x. x ) = 1 |
12 | 11 6 1 | wrex | |- E. x e. RR ( A x. x ) = 1 |
13 | 5 12 | wi | |- ( ( A e. RR /\ A =/= 0 ) -> E. x e. RR ( A x. x ) = 1 ) |