Metamath Proof Explorer


Axiom ax-un

Description: Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states that a set y exists that includes the union of a given set x i.e. the collection of all members of the members of x . The variant axun2 states that the union itself exists. A version with the standard abbreviation for union is uniex2 . A version using class notation is uniex .

The union of a class df-uni should not be confused with the union of two classes df-un . Their relationship is shown in unipr . (Contributed by NM, 23-Dec-1993)

Ref Expression
Assertion ax-un
|- E. y A. z ( E. w ( z e. w /\ w e. x ) -> z e. y )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vy
 |-  y
1 vz
 |-  z
2 vw
 |-  w
3 1 cv
 |-  z
4 2 cv
 |-  w
5 3 4 wcel
 |-  z e. w
6 vx
 |-  x
7 6 cv
 |-  x
8 4 7 wcel
 |-  w e. x
9 5 8 wa
 |-  ( z e. w /\ w e. x )
10 9 2 wex
 |-  E. w ( z e. w /\ w e. x )
11 0 cv
 |-  y
12 3 11 wcel
 |-  z e. y
13 10 12 wi
 |-  ( E. w ( z e. w /\ w e. x ) -> z e. y )
14 13 1 wal
 |-  A. z ( E. w ( z e. w /\ w e. x ) -> z e. y )
15 14 0 wex
 |-  E. y A. z ( E. w ( z e. w /\ w e. x ) -> z e. y )