Description: Axiom of Union. An axiom of Zermelo-Fraenkel set theory. It states that a set y exists that includes the union of a given set x i.e. the collection of all members of the members of x . The variant axun2 states that the union itself exists. A version with the standard abbreviation for union is uniex2 . A version using class notation is uniex .
The union of a class df-uni should not be confused with the union of two classes df-un . Their relationship is shown in unipr . (Contributed by NM, 23-Dec-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | ax-un | |- E. y A. z ( E. w ( z e. w /\ w e. x ) -> z e. y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vy | |- y |
|
1 | vz | |- z |
|
2 | vw | |- w |
|
3 | 1 | cv | |- z |
4 | 2 | cv | |- w |
5 | 3 4 | wcel | |- z e. w |
6 | vx | |- x |
|
7 | 6 | cv | |- x |
8 | 4 7 | wcel | |- w e. x |
9 | 5 8 | wa | |- ( z e. w /\ w e. x ) |
10 | 9 2 | wex | |- E. w ( z e. w /\ w e. x ) |
11 | 0 | cv | |- y |
12 | 3 11 | wcel | |- z e. y |
13 | 10 12 | wi | |- ( E. w ( z e. w /\ w e. x ) -> z e. y ) |
14 | 13 1 | wal | |- A. z ( E. w ( z e. w /\ w e. x ) -> z e. y ) |
15 | 14 0 | wex | |- E. y A. z ( E. w ( z e. w /\ w e. x ) -> z e. y ) |