Metamath Proof Explorer


Theorem ax11dgen

Description: Degenerate instance of ax-11 where bundled variables x and y have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017)

Ref Expression
Assertion ax11dgen
|- ( A. x A. x ph -> A. x A. x ph )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A. x A. x ph -> A. x A. x ph )