Description: Weak version of ax-11 from which we can prove any ax-11 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. Unlike ax-11 , this theorem requires that x and y be distinct i.e. are not bundled. It is an alias of alcomiw introduced for labeling consistency. (Contributed by NM, 10-Apr-2017) Use alcomiw instead. (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ax11w.1 | |- ( y = z -> ( ph <-> ps ) ) |
|
Assertion | ax11w | |- ( A. x A. y ph -> A. y A. x ph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax11w.1 | |- ( y = z -> ( ph <-> ps ) ) |
|
2 | 1 | alcomiw | |- ( A. x A. y ph -> A. y A. x ph ) |