Description: A bidirectional version of axc15 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax12b | |- ( ( -. A. x x = y /\ x = y ) -> ( ph <-> A. x ( x = y -> ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc15 | |- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
|
2 | 1 | imp | |- ( ( -. A. x x = y /\ x = y ) -> ( ph -> A. x ( x = y -> ph ) ) ) |
3 | sp | |- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
|
4 | 3 | com12 | |- ( x = y -> ( A. x ( x = y -> ph ) -> ph ) ) |
5 | 4 | adantl | |- ( ( -. A. x x = y /\ x = y ) -> ( A. x ( x = y -> ph ) -> ph ) ) |
6 | 2 5 | impbid | |- ( ( -. A. x x = y /\ x = y ) -> ( ph <-> A. x ( x = y -> ph ) ) ) |