Metamath Proof Explorer


Theorem ax12b

Description: A bidirectional version of axc15 . Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 30-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion ax12b
|- ( ( -. A. x x = y /\ x = y ) -> ( ph <-> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 axc15
 |-  ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )
2 1 imp
 |-  ( ( -. A. x x = y /\ x = y ) -> ( ph -> A. x ( x = y -> ph ) ) )
3 sp
 |-  ( A. x ( x = y -> ph ) -> ( x = y -> ph ) )
4 3 com12
 |-  ( x = y -> ( A. x ( x = y -> ph ) -> ph ) )
5 4 adantl
 |-  ( ( -. A. x x = y /\ x = y ) -> ( A. x ( x = y -> ph ) -> ph ) )
6 2 5 impbid
 |-  ( ( -. A. x x = y /\ x = y ) -> ( ph <-> A. x ( x = y -> ph ) ) )