Step |
Hyp |
Ref |
Expression |
1 |
|
19.26 |
|- ( A. x ( x = z /\ x = w ) <-> ( A. x x = z /\ A. x x = w ) ) |
2 |
|
equid |
|- x = x |
3 |
2
|
a1i |
|- ( x = y -> x = x ) |
4 |
3
|
ax-gen |
|- A. x ( x = y -> x = x ) |
5 |
4
|
a1i |
|- ( x = x -> A. x ( x = y -> x = x ) ) |
6 |
|
equequ1 |
|- ( x = z -> ( x = x <-> z = x ) ) |
7 |
|
equequ2 |
|- ( x = w -> ( z = x <-> z = w ) ) |
8 |
6 7
|
sylan9bb |
|- ( ( x = z /\ x = w ) -> ( x = x <-> z = w ) ) |
9 |
8
|
sps-o |
|- ( A. x ( x = z /\ x = w ) -> ( x = x <-> z = w ) ) |
10 |
|
nfa1-o |
|- F/ x A. x ( x = z /\ x = w ) |
11 |
9
|
imbi2d |
|- ( A. x ( x = z /\ x = w ) -> ( ( x = y -> x = x ) <-> ( x = y -> z = w ) ) ) |
12 |
10 11
|
albid |
|- ( A. x ( x = z /\ x = w ) -> ( A. x ( x = y -> x = x ) <-> A. x ( x = y -> z = w ) ) ) |
13 |
9 12
|
imbi12d |
|- ( A. x ( x = z /\ x = w ) -> ( ( x = x -> A. x ( x = y -> x = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
14 |
13
|
adantr |
|- ( ( A. x ( x = z /\ x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( x = x -> A. x ( x = y -> x = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
15 |
5 14
|
mpbii |
|- ( ( A. x ( x = z /\ x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
16 |
15
|
exp32 |
|- ( A. x ( x = z /\ x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
17 |
1 16
|
sylbir |
|- ( ( A. x x = z /\ A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
18 |
|
equequ1 |
|- ( x = y -> ( x = w <-> y = w ) ) |
19 |
18
|
ad2antll |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w <-> y = w ) ) |
20 |
|
axc9 |
|- ( -. A. x x = y -> ( -. A. x x = w -> ( y = w -> A. x y = w ) ) ) |
21 |
20
|
impcom |
|- ( ( -. A. x x = w /\ -. A. x x = y ) -> ( y = w -> A. x y = w ) ) |
22 |
21
|
adantrr |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( y = w -> A. x y = w ) ) |
23 |
|
equtrr |
|- ( y = w -> ( x = y -> x = w ) ) |
24 |
23
|
alimi |
|- ( A. x y = w -> A. x ( x = y -> x = w ) ) |
25 |
22 24
|
syl6 |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( y = w -> A. x ( x = y -> x = w ) ) ) |
26 |
19 25
|
sylbid |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w -> A. x ( x = y -> x = w ) ) ) |
27 |
26
|
adantll |
|- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w -> A. x ( x = y -> x = w ) ) ) |
28 |
|
equequ1 |
|- ( x = z -> ( x = w <-> z = w ) ) |
29 |
28
|
sps-o |
|- ( A. x x = z -> ( x = w <-> z = w ) ) |
30 |
29
|
imbi2d |
|- ( A. x x = z -> ( ( x = y -> x = w ) <-> ( x = y -> z = w ) ) ) |
31 |
30
|
dral2-o |
|- ( A. x x = z -> ( A. x ( x = y -> x = w ) <-> A. x ( x = y -> z = w ) ) ) |
32 |
29 31
|
imbi12d |
|- ( A. x x = z -> ( ( x = w -> A. x ( x = y -> x = w ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
33 |
32
|
ad2antrr |
|- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( x = w -> A. x ( x = y -> x = w ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
34 |
27 33
|
mpbid |
|- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
35 |
34
|
exp32 |
|- ( ( A. x x = z /\ -. A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
36 |
|
equequ2 |
|- ( x = y -> ( z = x <-> z = y ) ) |
37 |
36
|
ad2antll |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x <-> z = y ) ) |
38 |
|
axc9 |
|- ( -. A. x x = z -> ( -. A. x x = y -> ( z = y -> A. x z = y ) ) ) |
39 |
38
|
imp |
|- ( ( -. A. x x = z /\ -. A. x x = y ) -> ( z = y -> A. x z = y ) ) |
40 |
39
|
adantrr |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = y -> A. x z = y ) ) |
41 |
36
|
biimprcd |
|- ( z = y -> ( x = y -> z = x ) ) |
42 |
41
|
alimi |
|- ( A. x z = y -> A. x ( x = y -> z = x ) ) |
43 |
40 42
|
syl6 |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = y -> A. x ( x = y -> z = x ) ) ) |
44 |
37 43
|
sylbid |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x -> A. x ( x = y -> z = x ) ) ) |
45 |
44
|
adantlr |
|- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x -> A. x ( x = y -> z = x ) ) ) |
46 |
7
|
sps-o |
|- ( A. x x = w -> ( z = x <-> z = w ) ) |
47 |
46
|
imbi2d |
|- ( A. x x = w -> ( ( x = y -> z = x ) <-> ( x = y -> z = w ) ) ) |
48 |
47
|
dral2-o |
|- ( A. x x = w -> ( A. x ( x = y -> z = x ) <-> A. x ( x = y -> z = w ) ) ) |
49 |
46 48
|
imbi12d |
|- ( A. x x = w -> ( ( z = x -> A. x ( x = y -> z = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
50 |
49
|
ad2antlr |
|- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( z = x -> A. x ( x = y -> z = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
51 |
45 50
|
mpbid |
|- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
52 |
51
|
exp32 |
|- ( ( -. A. x x = z /\ A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
53 |
|
ax6ev |
|- E. u u = w |
54 |
|
ax6ev |
|- E. v v = z |
55 |
|
ax-1 |
|- ( v = u -> ( x = y -> v = u ) ) |
56 |
55
|
alrimiv |
|- ( v = u -> A. x ( x = y -> v = u ) ) |
57 |
|
equequ1 |
|- ( v = z -> ( v = u <-> z = u ) ) |
58 |
|
equequ2 |
|- ( u = w -> ( z = u <-> z = w ) ) |
59 |
57 58
|
sylan9bb |
|- ( ( v = z /\ u = w ) -> ( v = u <-> z = w ) ) |
60 |
59
|
adantl |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( v = u <-> z = w ) ) |
61 |
|
dveeq2-o |
|- ( -. A. x x = z -> ( v = z -> A. x v = z ) ) |
62 |
|
dveeq2-o |
|- ( -. A. x x = w -> ( u = w -> A. x u = w ) ) |
63 |
61 62
|
im2anan9 |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( ( v = z /\ u = w ) -> ( A. x v = z /\ A. x u = w ) ) ) |
64 |
63
|
imp |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( A. x v = z /\ A. x u = w ) ) |
65 |
|
19.26 |
|- ( A. x ( v = z /\ u = w ) <-> ( A. x v = z /\ A. x u = w ) ) |
66 |
64 65
|
sylibr |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> A. x ( v = z /\ u = w ) ) |
67 |
|
nfa1-o |
|- F/ x A. x ( v = z /\ u = w ) |
68 |
59
|
sps-o |
|- ( A. x ( v = z /\ u = w ) -> ( v = u <-> z = w ) ) |
69 |
68
|
imbi2d |
|- ( A. x ( v = z /\ u = w ) -> ( ( x = y -> v = u ) <-> ( x = y -> z = w ) ) ) |
70 |
67 69
|
albid |
|- ( A. x ( v = z /\ u = w ) -> ( A. x ( x = y -> v = u ) <-> A. x ( x = y -> z = w ) ) ) |
71 |
66 70
|
syl |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( A. x ( x = y -> v = u ) <-> A. x ( x = y -> z = w ) ) ) |
72 |
60 71
|
imbi12d |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( ( v = u -> A. x ( x = y -> v = u ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
73 |
56 72
|
mpbii |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
74 |
73
|
exp32 |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( v = z -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
75 |
74
|
exlimdv |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( E. v v = z -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
76 |
54 75
|
mpi |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
77 |
76
|
exlimdv |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( E. u u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
78 |
53 77
|
mpi |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
79 |
78
|
a1d |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
80 |
79
|
a1d |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
81 |
17 35 52 80
|
4cases |
|- ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |