| Step |
Hyp |
Ref |
Expression |
| 1 |
|
19.26 |
|- ( A. x ( x = z /\ x = w ) <-> ( A. x x = z /\ A. x x = w ) ) |
| 2 |
|
equid |
|- x = x |
| 3 |
2
|
a1i |
|- ( x = y -> x = x ) |
| 4 |
3
|
ax-gen |
|- A. x ( x = y -> x = x ) |
| 5 |
4
|
a1i |
|- ( x = x -> A. x ( x = y -> x = x ) ) |
| 6 |
|
equequ1 |
|- ( x = z -> ( x = x <-> z = x ) ) |
| 7 |
|
equequ2 |
|- ( x = w -> ( z = x <-> z = w ) ) |
| 8 |
6 7
|
sylan9bb |
|- ( ( x = z /\ x = w ) -> ( x = x <-> z = w ) ) |
| 9 |
8
|
sps-o |
|- ( A. x ( x = z /\ x = w ) -> ( x = x <-> z = w ) ) |
| 10 |
|
nfa1-o |
|- F/ x A. x ( x = z /\ x = w ) |
| 11 |
9
|
imbi2d |
|- ( A. x ( x = z /\ x = w ) -> ( ( x = y -> x = x ) <-> ( x = y -> z = w ) ) ) |
| 12 |
10 11
|
albid |
|- ( A. x ( x = z /\ x = w ) -> ( A. x ( x = y -> x = x ) <-> A. x ( x = y -> z = w ) ) ) |
| 13 |
9 12
|
imbi12d |
|- ( A. x ( x = z /\ x = w ) -> ( ( x = x -> A. x ( x = y -> x = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 14 |
13
|
adantr |
|- ( ( A. x ( x = z /\ x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( x = x -> A. x ( x = y -> x = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 15 |
5 14
|
mpbii |
|- ( ( A. x ( x = z /\ x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 16 |
15
|
exp32 |
|- ( A. x ( x = z /\ x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 17 |
1 16
|
sylbir |
|- ( ( A. x x = z /\ A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 18 |
|
equequ1 |
|- ( x = y -> ( x = w <-> y = w ) ) |
| 19 |
18
|
ad2antll |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w <-> y = w ) ) |
| 20 |
|
axc9 |
|- ( -. A. x x = y -> ( -. A. x x = w -> ( y = w -> A. x y = w ) ) ) |
| 21 |
20
|
impcom |
|- ( ( -. A. x x = w /\ -. A. x x = y ) -> ( y = w -> A. x y = w ) ) |
| 22 |
21
|
adantrr |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( y = w -> A. x y = w ) ) |
| 23 |
|
equtrr |
|- ( y = w -> ( x = y -> x = w ) ) |
| 24 |
23
|
alimi |
|- ( A. x y = w -> A. x ( x = y -> x = w ) ) |
| 25 |
22 24
|
syl6 |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( y = w -> A. x ( x = y -> x = w ) ) ) |
| 26 |
19 25
|
sylbid |
|- ( ( -. A. x x = w /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w -> A. x ( x = y -> x = w ) ) ) |
| 27 |
26
|
adantll |
|- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( x = w -> A. x ( x = y -> x = w ) ) ) |
| 28 |
|
equequ1 |
|- ( x = z -> ( x = w <-> z = w ) ) |
| 29 |
28
|
sps-o |
|- ( A. x x = z -> ( x = w <-> z = w ) ) |
| 30 |
29
|
imbi2d |
|- ( A. x x = z -> ( ( x = y -> x = w ) <-> ( x = y -> z = w ) ) ) |
| 31 |
30
|
dral2-o |
|- ( A. x x = z -> ( A. x ( x = y -> x = w ) <-> A. x ( x = y -> z = w ) ) ) |
| 32 |
29 31
|
imbi12d |
|- ( A. x x = z -> ( ( x = w -> A. x ( x = y -> x = w ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 33 |
32
|
ad2antrr |
|- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( x = w -> A. x ( x = y -> x = w ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 34 |
27 33
|
mpbid |
|- ( ( ( A. x x = z /\ -. A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 35 |
34
|
exp32 |
|- ( ( A. x x = z /\ -. A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 36 |
|
equequ2 |
|- ( x = y -> ( z = x <-> z = y ) ) |
| 37 |
36
|
ad2antll |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x <-> z = y ) ) |
| 38 |
|
axc9 |
|- ( -. A. x x = z -> ( -. A. x x = y -> ( z = y -> A. x z = y ) ) ) |
| 39 |
38
|
imp |
|- ( ( -. A. x x = z /\ -. A. x x = y ) -> ( z = y -> A. x z = y ) ) |
| 40 |
39
|
adantrr |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = y -> A. x z = y ) ) |
| 41 |
36
|
biimprcd |
|- ( z = y -> ( x = y -> z = x ) ) |
| 42 |
41
|
alimi |
|- ( A. x z = y -> A. x ( x = y -> z = x ) ) |
| 43 |
40 42
|
syl6 |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = y -> A. x ( x = y -> z = x ) ) ) |
| 44 |
37 43
|
sylbid |
|- ( ( -. A. x x = z /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x -> A. x ( x = y -> z = x ) ) ) |
| 45 |
44
|
adantlr |
|- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = x -> A. x ( x = y -> z = x ) ) ) |
| 46 |
7
|
sps-o |
|- ( A. x x = w -> ( z = x <-> z = w ) ) |
| 47 |
46
|
imbi2d |
|- ( A. x x = w -> ( ( x = y -> z = x ) <-> ( x = y -> z = w ) ) ) |
| 48 |
47
|
dral2-o |
|- ( A. x x = w -> ( A. x ( x = y -> z = x ) <-> A. x ( x = y -> z = w ) ) ) |
| 49 |
46 48
|
imbi12d |
|- ( A. x x = w -> ( ( z = x -> A. x ( x = y -> z = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 50 |
49
|
ad2antlr |
|- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( ( z = x -> A. x ( x = y -> z = x ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 51 |
45 50
|
mpbid |
|- ( ( ( -. A. x x = z /\ A. x x = w ) /\ ( -. A. x x = y /\ x = y ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 52 |
51
|
exp32 |
|- ( ( -. A. x x = z /\ A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 53 |
|
ax6ev |
|- E. u u = w |
| 54 |
|
ax6ev |
|- E. v v = z |
| 55 |
|
ax-1 |
|- ( v = u -> ( x = y -> v = u ) ) |
| 56 |
55
|
alrimiv |
|- ( v = u -> A. x ( x = y -> v = u ) ) |
| 57 |
|
equequ1 |
|- ( v = z -> ( v = u <-> z = u ) ) |
| 58 |
|
equequ2 |
|- ( u = w -> ( z = u <-> z = w ) ) |
| 59 |
57 58
|
sylan9bb |
|- ( ( v = z /\ u = w ) -> ( v = u <-> z = w ) ) |
| 60 |
59
|
adantl |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( v = u <-> z = w ) ) |
| 61 |
|
dveeq2-o |
|- ( -. A. x x = z -> ( v = z -> A. x v = z ) ) |
| 62 |
|
dveeq2-o |
|- ( -. A. x x = w -> ( u = w -> A. x u = w ) ) |
| 63 |
61 62
|
im2anan9 |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( ( v = z /\ u = w ) -> ( A. x v = z /\ A. x u = w ) ) ) |
| 64 |
63
|
imp |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( A. x v = z /\ A. x u = w ) ) |
| 65 |
|
19.26 |
|- ( A. x ( v = z /\ u = w ) <-> ( A. x v = z /\ A. x u = w ) ) |
| 66 |
64 65
|
sylibr |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> A. x ( v = z /\ u = w ) ) |
| 67 |
|
nfa1-o |
|- F/ x A. x ( v = z /\ u = w ) |
| 68 |
59
|
sps-o |
|- ( A. x ( v = z /\ u = w ) -> ( v = u <-> z = w ) ) |
| 69 |
68
|
imbi2d |
|- ( A. x ( v = z /\ u = w ) -> ( ( x = y -> v = u ) <-> ( x = y -> z = w ) ) ) |
| 70 |
67 69
|
albid |
|- ( A. x ( v = z /\ u = w ) -> ( A. x ( x = y -> v = u ) <-> A. x ( x = y -> z = w ) ) ) |
| 71 |
66 70
|
syl |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( A. x ( x = y -> v = u ) <-> A. x ( x = y -> z = w ) ) ) |
| 72 |
60 71
|
imbi12d |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( ( v = u -> A. x ( x = y -> v = u ) ) <-> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 73 |
56 72
|
mpbii |
|- ( ( ( -. A. x x = z /\ -. A. x x = w ) /\ ( v = z /\ u = w ) ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 74 |
73
|
exp32 |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( v = z -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 75 |
74
|
exlimdv |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( E. v v = z -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 76 |
54 75
|
mpi |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 77 |
76
|
exlimdv |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( E. u u = w -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 78 |
53 77
|
mpi |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( z = w -> A. x ( x = y -> z = w ) ) ) |
| 79 |
78
|
a1d |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |
| 80 |
79
|
a1d |
|- ( ( -. A. x x = z /\ -. A. x x = w ) -> ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) ) |
| 81 |
17 35 52 80
|
4cases |
|- ( -. A. x x = y -> ( x = y -> ( z = w -> A. x ( x = y -> z = w ) ) ) ) |