Description: Version of ax12v2 rewritten to use an existential quantifier. One direction of sbalex without the universal quantifier, avoiding ax-10 . (Contributed by SN, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ax12ev2 | |- ( E. x ( x = y /\ ph ) -> ( x = y -> ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exnalimn | |- ( E. x ( x = y /\ ph ) <-> -. A. x ( x = y -> -. ph ) ) |
|
2 | ax12v2 | |- ( x = y -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) |
|
3 | 2 | con1d | |- ( x = y -> ( -. A. x ( x = y -> -. ph ) -> ph ) ) |
4 | 1 3 | biimtrid | |- ( x = y -> ( E. x ( x = y /\ ph ) -> ph ) ) |
5 | 4 | com12 | |- ( E. x ( x = y /\ ph ) -> ( x = y -> ph ) ) |