Metamath Proof Explorer


Theorem ax12ev2

Description: Version of ax12v2 rewritten to use an existential quantifier. One direction of sbalex without the universal quantifier, avoiding ax-10 . (Contributed by SN, 14-Aug-2025)

Ref Expression
Assertion ax12ev2
|- ( E. x ( x = y /\ ph ) -> ( x = y -> ph ) )

Proof

Step Hyp Ref Expression
1 exnalimn
 |-  ( E. x ( x = y /\ ph ) <-> -. A. x ( x = y -> -. ph ) )
2 ax12v2
 |-  ( x = y -> ( -. ph -> A. x ( x = y -> -. ph ) ) )
3 2 con1d
 |-  ( x = y -> ( -. A. x ( x = y -> -. ph ) -> ph ) )
4 1 3 biimtrid
 |-  ( x = y -> ( E. x ( x = y /\ ph ) -> ph ) )
5 4 com12
 |-  ( E. x ( x = y /\ ph ) -> ( x = y -> ph ) )