Metamath Proof Explorer


Theorem ax12f

Description: Basis step for constructing a substitution instance of ax-c15 without using ax-c15 . We can start with any formula ph in which x is not free. (Contributed by NM, 21-Jan-2007) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis ax12f.1
|- ( ph -> A. x ph )
Assertion ax12f
|- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )

Proof

Step Hyp Ref Expression
1 ax12f.1
 |-  ( ph -> A. x ph )
2 ax-1
 |-  ( ph -> ( x = y -> ph ) )
3 1 2 alrimih
 |-  ( ph -> A. x ( x = y -> ph ) )
4 3 2a1i
 |-  ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )