Step |
Hyp |
Ref |
Expression |
1 |
|
ax12inda.1 |
|- ( -. A. x x = w -> ( x = w -> ( ph -> A. x ( x = w -> ph ) ) ) ) |
2 |
|
ax6ev |
|- E. w w = y |
3 |
1
|
ax12inda2 |
|- ( -. A. x x = w -> ( x = w -> ( A. z ph -> A. x ( x = w -> A. z ph ) ) ) ) |
4 |
|
dveeq2-o |
|- ( -. A. x x = y -> ( w = y -> A. x w = y ) ) |
5 |
4
|
imp |
|- ( ( -. A. x x = y /\ w = y ) -> A. x w = y ) |
6 |
|
hba1-o |
|- ( A. x w = y -> A. x A. x w = y ) |
7 |
|
equequ2 |
|- ( w = y -> ( x = w <-> x = y ) ) |
8 |
7
|
sps-o |
|- ( A. x w = y -> ( x = w <-> x = y ) ) |
9 |
6 8
|
albidh |
|- ( A. x w = y -> ( A. x x = w <-> A. x x = y ) ) |
10 |
9
|
notbid |
|- ( A. x w = y -> ( -. A. x x = w <-> -. A. x x = y ) ) |
11 |
5 10
|
syl |
|- ( ( -. A. x x = y /\ w = y ) -> ( -. A. x x = w <-> -. A. x x = y ) ) |
12 |
7
|
adantl |
|- ( ( -. A. x x = y /\ w = y ) -> ( x = w <-> x = y ) ) |
13 |
8
|
imbi1d |
|- ( A. x w = y -> ( ( x = w -> A. z ph ) <-> ( x = y -> A. z ph ) ) ) |
14 |
6 13
|
albidh |
|- ( A. x w = y -> ( A. x ( x = w -> A. z ph ) <-> A. x ( x = y -> A. z ph ) ) ) |
15 |
5 14
|
syl |
|- ( ( -. A. x x = y /\ w = y ) -> ( A. x ( x = w -> A. z ph ) <-> A. x ( x = y -> A. z ph ) ) ) |
16 |
15
|
imbi2d |
|- ( ( -. A. x x = y /\ w = y ) -> ( ( A. z ph -> A. x ( x = w -> A. z ph ) ) <-> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |
17 |
12 16
|
imbi12d |
|- ( ( -. A. x x = y /\ w = y ) -> ( ( x = w -> ( A. z ph -> A. x ( x = w -> A. z ph ) ) ) <-> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
18 |
11 17
|
imbi12d |
|- ( ( -. A. x x = y /\ w = y ) -> ( ( -. A. x x = w -> ( x = w -> ( A. z ph -> A. x ( x = w -> A. z ph ) ) ) ) <-> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) ) |
19 |
3 18
|
mpbii |
|- ( ( -. A. x x = y /\ w = y ) -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
20 |
19
|
ex |
|- ( -. A. x x = y -> ( w = y -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) ) |
21 |
20
|
exlimdv |
|- ( -. A. x x = y -> ( E. w w = y -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) ) |
22 |
2 21
|
mpi |
|- ( -. A. x x = y -> ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) ) |
23 |
22
|
pm2.43i |
|- ( -. A. x x = y -> ( x = y -> ( A. z ph -> A. x ( x = y -> A. z ph ) ) ) ) |