| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax12indn.1 |
|- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
| 2 |
|
ax12indi.2 |
|- ( -. A. x x = y -> ( x = y -> ( ps -> A. x ( x = y -> ps ) ) ) ) |
| 3 |
1
|
ax12indn |
|- ( -. A. x x = y -> ( x = y -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) ) |
| 4 |
3
|
imp |
|- ( ( -. A. x x = y /\ x = y ) -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) |
| 5 |
|
pm2.21 |
|- ( -. ph -> ( ph -> ps ) ) |
| 6 |
5
|
imim2i |
|- ( ( x = y -> -. ph ) -> ( x = y -> ( ph -> ps ) ) ) |
| 7 |
6
|
alimi |
|- ( A. x ( x = y -> -. ph ) -> A. x ( x = y -> ( ph -> ps ) ) ) |
| 8 |
4 7
|
syl6 |
|- ( ( -. A. x x = y /\ x = y ) -> ( -. ph -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
| 9 |
2
|
imp |
|- ( ( -. A. x x = y /\ x = y ) -> ( ps -> A. x ( x = y -> ps ) ) ) |
| 10 |
|
ax-1 |
|- ( ps -> ( ph -> ps ) ) |
| 11 |
10
|
imim2i |
|- ( ( x = y -> ps ) -> ( x = y -> ( ph -> ps ) ) ) |
| 12 |
11
|
alimi |
|- ( A. x ( x = y -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) |
| 13 |
9 12
|
syl6 |
|- ( ( -. A. x x = y /\ x = y ) -> ( ps -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
| 14 |
8 13
|
jad |
|- ( ( -. A. x x = y /\ x = y ) -> ( ( ph -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
| 15 |
14
|
ex |
|- ( -. A. x x = y -> ( x = y -> ( ( ph -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) ) ) |