Step |
Hyp |
Ref |
Expression |
1 |
|
ax12indn.1 |
|- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
2 |
|
ax12indi.2 |
|- ( -. A. x x = y -> ( x = y -> ( ps -> A. x ( x = y -> ps ) ) ) ) |
3 |
1
|
ax12indn |
|- ( -. A. x x = y -> ( x = y -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) ) |
4 |
3
|
imp |
|- ( ( -. A. x x = y /\ x = y ) -> ( -. ph -> A. x ( x = y -> -. ph ) ) ) |
5 |
|
pm2.21 |
|- ( -. ph -> ( ph -> ps ) ) |
6 |
5
|
imim2i |
|- ( ( x = y -> -. ph ) -> ( x = y -> ( ph -> ps ) ) ) |
7 |
6
|
alimi |
|- ( A. x ( x = y -> -. ph ) -> A. x ( x = y -> ( ph -> ps ) ) ) |
8 |
4 7
|
syl6 |
|- ( ( -. A. x x = y /\ x = y ) -> ( -. ph -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
9 |
2
|
imp |
|- ( ( -. A. x x = y /\ x = y ) -> ( ps -> A. x ( x = y -> ps ) ) ) |
10 |
|
ax-1 |
|- ( ps -> ( ph -> ps ) ) |
11 |
10
|
imim2i |
|- ( ( x = y -> ps ) -> ( x = y -> ( ph -> ps ) ) ) |
12 |
11
|
alimi |
|- ( A. x ( x = y -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) |
13 |
9 12
|
syl6 |
|- ( ( -. A. x x = y /\ x = y ) -> ( ps -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
14 |
8 13
|
jad |
|- ( ( -. A. x x = y /\ x = y ) -> ( ( ph -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) ) |
15 |
14
|
ex |
|- ( -. A. x x = y -> ( x = y -> ( ( ph -> ps ) -> A. x ( x = y -> ( ph -> ps ) ) ) ) ) |