Metamath Proof Explorer


Theorem ax12v2

Description: It is possible to remove any restriction on ph in ax12v . Same as Axiom C8 of Monk2 p. 105. Use ax12v instead when sufficient. (Contributed by NM, 5-Aug-1993) Remove dependencies on ax-10 and ax-13 . (Revised by Jim Kingdon, 15-Dec-2017) (Proof shortened by Wolf Lammen, 8-Dec-2019)

Ref Expression
Assertion ax12v2
|- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 equtrr
 |-  ( y = z -> ( x = y -> x = z ) )
2 ax12v
 |-  ( x = z -> ( ph -> A. x ( x = z -> ph ) ) )
3 1 imim1d
 |-  ( y = z -> ( ( x = z -> ph ) -> ( x = y -> ph ) ) )
4 3 alimdv
 |-  ( y = z -> ( A. x ( x = z -> ph ) -> A. x ( x = y -> ph ) ) )
5 2 4 syl9r
 |-  ( y = z -> ( x = z -> ( ph -> A. x ( x = y -> ph ) ) ) )
6 1 5 syld
 |-  ( y = z -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )
7 ax6evr
 |-  E. z y = z
8 6 7 exlimiiv
 |-  ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )