Step |
Hyp |
Ref |
Expression |
1 |
|
ax12v2-o.1 |
|- ( x = z -> ( ph -> A. x ( x = z -> ph ) ) ) |
2 |
|
ax6ev |
|- E. z z = y |
3 |
|
equequ2 |
|- ( z = y -> ( x = z <-> x = y ) ) |
4 |
3
|
adantl |
|- ( ( -. A. x x = y /\ z = y ) -> ( x = z <-> x = y ) ) |
5 |
|
dveeq2-o |
|- ( -. A. x x = y -> ( z = y -> A. x z = y ) ) |
6 |
5
|
imp |
|- ( ( -. A. x x = y /\ z = y ) -> A. x z = y ) |
7 |
|
nfa1-o |
|- F/ x A. x z = y |
8 |
3
|
imbi1d |
|- ( z = y -> ( ( x = z -> ph ) <-> ( x = y -> ph ) ) ) |
9 |
8
|
sps-o |
|- ( A. x z = y -> ( ( x = z -> ph ) <-> ( x = y -> ph ) ) ) |
10 |
7 9
|
albid |
|- ( A. x z = y -> ( A. x ( x = z -> ph ) <-> A. x ( x = y -> ph ) ) ) |
11 |
6 10
|
syl |
|- ( ( -. A. x x = y /\ z = y ) -> ( A. x ( x = z -> ph ) <-> A. x ( x = y -> ph ) ) ) |
12 |
11
|
imbi2d |
|- ( ( -. A. x x = y /\ z = y ) -> ( ( ph -> A. x ( x = z -> ph ) ) <-> ( ph -> A. x ( x = y -> ph ) ) ) ) |
13 |
4 12
|
imbi12d |
|- ( ( -. A. x x = y /\ z = y ) -> ( ( x = z -> ( ph -> A. x ( x = z -> ph ) ) ) <-> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) ) |
14 |
1 13
|
mpbii |
|- ( ( -. A. x x = y /\ z = y ) -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |
15 |
14
|
ex |
|- ( -. A. x x = y -> ( z = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) ) |
16 |
15
|
exlimdv |
|- ( -. A. x x = y -> ( E. z z = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) ) |
17 |
2 16
|
mpi |
|- ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) ) |