Metamath Proof Explorer


Theorem ax12vALT

Description: Alternate proof of ax12v2 , shorter, but depending on more axioms. (Contributed by NM, 5-Aug-1993) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ax12vALT
|- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 ax-1
 |-  ( ph -> ( x = y -> ph ) )
2 axc16
 |-  ( A. x x = y -> ( ( x = y -> ph ) -> A. x ( x = y -> ph ) ) )
3 1 2 syl5
 |-  ( A. x x = y -> ( ph -> A. x ( x = y -> ph ) ) )
4 3 a1d
 |-  ( A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )
5 axc15
 |-  ( -. A. x x = y -> ( x = y -> ( ph -> A. x ( x = y -> ph ) ) ) )
6 4 5 pm2.61i
 |-  ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )