Metamath Proof Explorer


Theorem ax12wlem

Description: Lemma for weak version of ax-12 . Uses only Tarski's FOL axiom schemes. In some cases, this lemma may lead to shorter proofs than ax12w . (Contributed by NM, 10-Apr-2017)

Ref Expression
Hypothesis ax12wlemw.1
|- ( x = y -> ( ph <-> ps ) )
Assertion ax12wlem
|- ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )

Proof

Step Hyp Ref Expression
1 ax12wlemw.1
 |-  ( x = y -> ( ph <-> ps ) )
2 ax-5
 |-  ( ps -> A. x ps )
3 1 2 ax12i
 |-  ( x = y -> ( ph -> A. x ( x = y -> ph ) ) )