| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equvinv |
|- ( y = z <-> E. w ( w = y /\ w = z ) ) |
| 2 |
|
ax13lem1 |
|- ( -. x = y -> ( w = y -> A. x w = y ) ) |
| 3 |
2
|
imp |
|- ( ( -. x = y /\ w = y ) -> A. x w = y ) |
| 4 |
|
ax13lem1 |
|- ( -. x = z -> ( w = z -> A. x w = z ) ) |
| 5 |
4
|
imp |
|- ( ( -. x = z /\ w = z ) -> A. x w = z ) |
| 6 |
|
ax7v1 |
|- ( w = y -> ( w = z -> y = z ) ) |
| 7 |
6
|
imp |
|- ( ( w = y /\ w = z ) -> y = z ) |
| 8 |
7
|
alanimi |
|- ( ( A. x w = y /\ A. x w = z ) -> A. x y = z ) |
| 9 |
3 5 8
|
syl2an |
|- ( ( ( -. x = y /\ w = y ) /\ ( -. x = z /\ w = z ) ) -> A. x y = z ) |
| 10 |
9
|
an4s |
|- ( ( ( -. x = y /\ -. x = z ) /\ ( w = y /\ w = z ) ) -> A. x y = z ) |
| 11 |
10
|
ex |
|- ( ( -. x = y /\ -. x = z ) -> ( ( w = y /\ w = z ) -> A. x y = z ) ) |
| 12 |
11
|
exlimdv |
|- ( ( -. x = y /\ -. x = z ) -> ( E. w ( w = y /\ w = z ) -> A. x y = z ) ) |
| 13 |
1 12
|
biimtrid |
|- ( ( -. x = y /\ -. x = z ) -> ( y = z -> A. x y = z ) ) |
| 14 |
13
|
ex |
|- ( -. x = y -> ( -. x = z -> ( y = z -> A. x y = z ) ) ) |
| 15 |
|
ax13b |
|- ( ( -. x = y -> ( y = z -> A. x y = z ) ) <-> ( -. x = y -> ( -. x = z -> ( y = z -> A. x y = z ) ) ) ) |
| 16 |
14 15
|
mpbir |
|- ( -. x = y -> ( y = z -> A. x y = z ) ) |