Metamath Proof Explorer


Theorem ax13ALT

Description: Alternate proof of ax13 from FOL, sp , and axc9 . (Contributed by NM, 21-Dec-2015) (Proof shortened by Wolf Lammen, 31-Jan-2018) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax13ALT
|- ( -. x = y -> ( y = z -> A. x y = z ) )

Proof

Step Hyp Ref Expression
1 sp
 |-  ( A. x x = y -> x = y )
2 1 con3i
 |-  ( -. x = y -> -. A. x x = y )
3 sp
 |-  ( A. x x = z -> x = z )
4 3 con3i
 |-  ( -. x = z -> -. A. x x = z )
5 axc9
 |-  ( -. A. x x = y -> ( -. A. x x = z -> ( y = z -> A. x y = z ) ) )
6 2 4 5 syl2im
 |-  ( -. x = y -> ( -. x = z -> ( y = z -> A. x y = z ) ) )
7 ax13b
 |-  ( ( -. x = y -> ( y = z -> A. x y = z ) ) <-> ( -. x = y -> ( -. x = z -> ( y = z -> A. x y = z ) ) ) )
8 6 7 mpbir
 |-  ( -. x = y -> ( y = z -> A. x y = z ) )