Metamath Proof Explorer


Theorem ax13dgen3

Description: Degenerate instance of ax-13 where bundled variables y and z have a common substitution. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 13-Apr-2017)

Ref Expression
Assertion ax13dgen3
|- ( -. x = y -> ( y = y -> A. x y = y ) )

Proof

Step Hyp Ref Expression
1 equid
 |-  y = y
2 1 ax-gen
 |-  A. x y = y
3 2 2a1i
 |-  ( -. x = y -> ( y = y -> A. x y = y ) )