Metamath Proof Explorer


Theorem ax13lem1

Description: A version of ax13v with one distinct variable restriction dropped. For convenience, y is kept on the right side of equations. The proof of ax13 bases on ideas from NM, 24-Dec-2015. (Contributed by Wolf Lammen, 8-Sep-2018) (New usage is discouraged.)

Ref Expression
Assertion ax13lem1
|- ( -. x = y -> ( z = y -> A. x z = y ) )

Proof

Step Hyp Ref Expression
1 equvinva
 |-  ( z = y -> E. w ( z = w /\ y = w ) )
2 ax13v
 |-  ( -. x = y -> ( y = w -> A. x y = w ) )
3 equeucl
 |-  ( z = w -> ( y = w -> z = y ) )
4 3 alimdv
 |-  ( z = w -> ( A. x y = w -> A. x z = y ) )
5 2 4 syl9
 |-  ( -. x = y -> ( z = w -> ( y = w -> A. x z = y ) ) )
6 5 impd
 |-  ( -. x = y -> ( ( z = w /\ y = w ) -> A. x z = y ) )
7 6 exlimdv
 |-  ( -. x = y -> ( E. w ( z = w /\ y = w ) -> A. x z = y ) )
8 1 7 syl5
 |-  ( -. x = y -> ( z = y -> A. x z = y ) )