Step |
Hyp |
Ref |
Expression |
1 |
|
ax13lem1 |
|- ( -. x = y -> ( w = y -> A. x w = y ) ) |
2 |
|
equeucl |
|- ( z = y -> ( w = y -> z = w ) ) |
3 |
2
|
eximi |
|- ( E. x z = y -> E. x ( w = y -> z = w ) ) |
4 |
|
19.36v |
|- ( E. x ( w = y -> z = w ) <-> ( A. x w = y -> z = w ) ) |
5 |
3 4
|
sylib |
|- ( E. x z = y -> ( A. x w = y -> z = w ) ) |
6 |
1 5
|
syl9 |
|- ( -. x = y -> ( E. x z = y -> ( w = y -> z = w ) ) ) |
7 |
6
|
alrimdv |
|- ( -. x = y -> ( E. x z = y -> A. w ( w = y -> z = w ) ) ) |
8 |
|
equequ2 |
|- ( w = y -> ( z = w <-> z = y ) ) |
9 |
8
|
equsalvw |
|- ( A. w ( w = y -> z = w ) <-> z = y ) |
10 |
7 9
|
syl6ib |
|- ( -. x = y -> ( E. x z = y -> z = y ) ) |