Metamath Proof Explorer


Theorem ax1cn

Description: 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn . (Contributed by NM, 12-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion ax1cn
|- 1 e. CC

Proof

Step Hyp Ref Expression
1 axresscn
 |-  RR C_ CC
2 df-1
 |-  1 = <. 1R , 0R >.
3 1sr
 |-  1R e. R.
4 opelreal
 |-  ( <. 1R , 0R >. e. RR <-> 1R e. R. )
5 3 4 mpbir
 |-  <. 1R , 0R >. e. RR
6 2 5 eqeltri
 |-  1 e. RR
7 1 6 sselii
 |-  1 e. CC