| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-r |
|- RR = ( R. X. { 0R } ) |
| 2 |
|
oveq1 |
|- ( <. x , y >. = A -> ( <. x , y >. x. 1 ) = ( A x. 1 ) ) |
| 3 |
|
id |
|- ( <. x , y >. = A -> <. x , y >. = A ) |
| 4 |
2 3
|
eqeq12d |
|- ( <. x , y >. = A -> ( ( <. x , y >. x. 1 ) = <. x , y >. <-> ( A x. 1 ) = A ) ) |
| 5 |
|
elsni |
|- ( y e. { 0R } -> y = 0R ) |
| 6 |
|
df-1 |
|- 1 = <. 1R , 0R >. |
| 7 |
6
|
oveq2i |
|- ( <. x , 0R >. x. 1 ) = ( <. x , 0R >. x. <. 1R , 0R >. ) |
| 8 |
|
1sr |
|- 1R e. R. |
| 9 |
|
mulresr |
|- ( ( x e. R. /\ 1R e. R. ) -> ( <. x , 0R >. x. <. 1R , 0R >. ) = <. ( x .R 1R ) , 0R >. ) |
| 10 |
8 9
|
mpan2 |
|- ( x e. R. -> ( <. x , 0R >. x. <. 1R , 0R >. ) = <. ( x .R 1R ) , 0R >. ) |
| 11 |
|
1idsr |
|- ( x e. R. -> ( x .R 1R ) = x ) |
| 12 |
11
|
opeq1d |
|- ( x e. R. -> <. ( x .R 1R ) , 0R >. = <. x , 0R >. ) |
| 13 |
10 12
|
eqtrd |
|- ( x e. R. -> ( <. x , 0R >. x. <. 1R , 0R >. ) = <. x , 0R >. ) |
| 14 |
7 13
|
eqtrid |
|- ( x e. R. -> ( <. x , 0R >. x. 1 ) = <. x , 0R >. ) |
| 15 |
|
opeq2 |
|- ( y = 0R -> <. x , y >. = <. x , 0R >. ) |
| 16 |
15
|
oveq1d |
|- ( y = 0R -> ( <. x , y >. x. 1 ) = ( <. x , 0R >. x. 1 ) ) |
| 17 |
16 15
|
eqeq12d |
|- ( y = 0R -> ( ( <. x , y >. x. 1 ) = <. x , y >. <-> ( <. x , 0R >. x. 1 ) = <. x , 0R >. ) ) |
| 18 |
14 17
|
imbitrrid |
|- ( y = 0R -> ( x e. R. -> ( <. x , y >. x. 1 ) = <. x , y >. ) ) |
| 19 |
18
|
impcom |
|- ( ( x e. R. /\ y = 0R ) -> ( <. x , y >. x. 1 ) = <. x , y >. ) |
| 20 |
5 19
|
sylan2 |
|- ( ( x e. R. /\ y e. { 0R } ) -> ( <. x , y >. x. 1 ) = <. x , y >. ) |
| 21 |
1 4 20
|
optocl |
|- ( A e. RR -> ( A x. 1 ) = A ) |