Metamath Proof Explorer


Theorem ax5el

Description: Theorem to add distinct quantifier to atomic formula. This theorem demonstrates the induction basis for ax-5 considered as a metatheorem.) (Contributed by NM, 22-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax5el
|- ( x e. y -> A. z x e. y )

Proof

Step Hyp Ref Expression
1 ax-c14
 |-  ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) )
2 ax-c16
 |-  ( A. z z = x -> ( x e. y -> A. z x e. y ) )
3 ax-c16
 |-  ( A. z z = y -> ( x e. y -> A. z x e. y ) )
4 1 2 3 pm2.61ii
 |-  ( x e. y -> A. z x e. y )