Description: Theorem to add distinct quantifier to atomic formula. This theorem demonstrates the induction basis for ax-5 considered as a metatheorem.) (Contributed by NM, 22-Jun-1993) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax5el | |- ( x e. y -> A. z x e. y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c14 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x e. y -> A. z x e. y ) ) ) |
|
2 | ax-c16 | |- ( A. z z = x -> ( x e. y -> A. z x e. y ) ) |
|
3 | ax-c16 | |- ( A. z z = y -> ( x e. y -> A. z x e. y ) ) |
|
4 | 1 2 3 | pm2.61ii | |- ( x e. y -> A. z x e. y ) |