Description: Theorem to add distinct quantifier to atomic formula. (This theorem demonstrates the induction basis for ax-5 considered as a metatheorem. Do not use it for later proofs - use ax-5 instead, to avoid reference to the redundant axiom ax-c16 .) (Contributed by NM, 10-Jan-1993) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | ax5eq | |- ( x = y -> A. z x = y ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-c9 | |- ( -. A. z z = x -> ( -. A. z z = y -> ( x = y -> A. z x = y ) ) ) |
|
2 | ax-c16 | |- ( A. z z = x -> ( x = y -> A. z x = y ) ) |
|
3 | ax-c16 | |- ( A. z z = y -> ( x = y -> A. z x = y ) ) |
|
4 | 1 2 3 | pm2.61ii | |- ( x = y -> A. z x = y ) |