| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq1 |
|- ( A = C -> ( A ` i ) = ( C ` i ) ) |
| 2 |
1
|
oveq2d |
|- ( A = C -> ( T x. ( A ` i ) ) = ( T x. ( C ` i ) ) ) |
| 3 |
2
|
oveq2d |
|- ( A = C -> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) |
| 4 |
3
|
eqeq2d |
|- ( A = C -> ( ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) <-> ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) |
| 5 |
4
|
ralbidv |
|- ( A = C -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) |
| 6 |
5
|
biimparc |
|- ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A = C ) -> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
| 7 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> A e. ( EE ` N ) ) |
| 8 |
|
simplr2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> B e. ( EE ` N ) ) |
| 9 |
|
eqeefv |
|- ( ( A e. ( EE ` N ) /\ B e. ( EE ` N ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 10 |
7 8 9
|
syl2anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) ) ) |
| 11 |
|
fveecn |
|- ( ( A e. ( EE ` N ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 12 |
7 11
|
sylan |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( A ` i ) e. CC ) |
| 13 |
|
elicc01 |
|- ( T e. ( 0 [,] 1 ) <-> ( T e. RR /\ 0 <_ T /\ T <_ 1 ) ) |
| 14 |
13
|
simp1bi |
|- ( T e. ( 0 [,] 1 ) -> T e. RR ) |
| 15 |
14
|
recnd |
|- ( T e. ( 0 [,] 1 ) -> T e. CC ) |
| 16 |
15
|
ad2antlr |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> T e. CC ) |
| 17 |
|
ax-1cn |
|- 1 e. CC |
| 18 |
|
npcan |
|- ( ( 1 e. CC /\ T e. CC ) -> ( ( 1 - T ) + T ) = 1 ) |
| 19 |
17 18
|
mpan |
|- ( T e. CC -> ( ( 1 - T ) + T ) = 1 ) |
| 20 |
19
|
oveq1d |
|- ( T e. CC -> ( ( ( 1 - T ) + T ) x. ( A ` i ) ) = ( 1 x. ( A ` i ) ) ) |
| 21 |
|
mullid |
|- ( ( A ` i ) e. CC -> ( 1 x. ( A ` i ) ) = ( A ` i ) ) |
| 22 |
20 21
|
sylan9eqr |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( ( ( 1 - T ) + T ) x. ( A ` i ) ) = ( A ` i ) ) |
| 23 |
|
subcl |
|- ( ( 1 e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
| 24 |
17 23
|
mpan |
|- ( T e. CC -> ( 1 - T ) e. CC ) |
| 25 |
24
|
adantl |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( 1 - T ) e. CC ) |
| 26 |
|
simpr |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> T e. CC ) |
| 27 |
|
simpl |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( A ` i ) e. CC ) |
| 28 |
25 26 27
|
adddird |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( ( ( 1 - T ) + T ) x. ( A ` i ) ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
| 29 |
22 28
|
eqtr3d |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( A ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
| 30 |
29
|
eqeq1d |
|- ( ( ( A ` i ) e. CC /\ T e. CC ) -> ( ( A ` i ) = ( B ` i ) <-> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( B ` i ) ) ) |
| 31 |
12 16 30
|
syl2anc |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) = ( B ` i ) <-> ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( B ` i ) ) ) |
| 32 |
|
eqcom |
|- ( ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) = ( B ` i ) <-> ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) |
| 33 |
31 32
|
bitrdi |
|- ( ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) /\ i e. ( 1 ... N ) ) -> ( ( A ` i ) = ( B ` i ) <-> ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) ) |
| 34 |
33
|
ralbidva |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( A ` i ) = ( B ` i ) <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) ) |
| 35 |
10 34
|
bitrd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A = B <-> A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( A ` i ) ) ) ) ) |
| 36 |
6 35
|
imbitrrid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) /\ A = C ) -> A = B ) ) |
| 37 |
36
|
expd |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ T e. ( 0 [,] 1 ) ) -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) -> ( A = C -> A = B ) ) ) |
| 38 |
37
|
impr |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A = C -> A = B ) ) |
| 39 |
38
|
necon3d |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A =/= B -> A =/= C ) ) |
| 40 |
39
|
ex |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> ( A =/= B -> A =/= C ) ) ) |
| 41 |
40
|
com23 |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A =/= B -> ( ( T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) -> A =/= C ) ) ) |
| 42 |
41
|
exp4a |
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A =/= B -> ( T e. ( 0 [,] 1 ) -> ( A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) -> A =/= C ) ) ) ) |
| 43 |
42
|
3imp2 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> A =/= C ) |
| 44 |
|
simplr1 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> A e. ( EE ` N ) ) |
| 45 |
|
simplr3 |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> C e. ( EE ` N ) ) |
| 46 |
|
eqeelen |
|- ( ( A e. ( EE ` N ) /\ C e. ( EE ` N ) ) -> ( A = C <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = 0 ) ) |
| 47 |
44 45 46
|
syl2anc |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A = C <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) = 0 ) ) |
| 48 |
47
|
necon3bid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> ( A =/= C <-> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) ) |
| 49 |
43 48
|
mpbid |
|- ( ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) /\ ( A =/= B /\ T e. ( 0 [,] 1 ) /\ A. i e. ( 1 ... N ) ( B ` i ) = ( ( ( 1 - T ) x. ( A ` i ) ) + ( T x. ( C ` i ) ) ) ) ) -> sum_ j e. ( 1 ... N ) ( ( ( A ` j ) - ( C ` j ) ) ^ 2 ) =/= 0 ) |