Step |
Hyp |
Ref |
Expression |
1 |
|
ax6e2nd |
|- ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) ) |
2 |
|
ax6e2eq |
|- ( A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |
3 |
1
|
a1d |
|- ( -. A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) ) |
4 |
2 3
|
pm2.61i |
|- ( u = v -> E. x E. y ( x = u /\ y = v ) ) |
5 |
1 4
|
jaoi |
|- ( ( -. A. x x = y \/ u = v ) -> E. x E. y ( x = u /\ y = v ) ) |
6 |
|
olc |
|- ( u = v -> ( -. A. x x = y \/ u = v ) ) |
7 |
6
|
a1d |
|- ( u = v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ) |
8 |
|
excom |
|- ( E. x E. y ( x = u /\ y = v ) <-> E. y E. x ( x = u /\ y = v ) ) |
9 |
|
neeq1 |
|- ( x = u -> ( x =/= v <-> u =/= v ) ) |
10 |
9
|
biimprcd |
|- ( u =/= v -> ( x = u -> x =/= v ) ) |
11 |
10
|
adantrd |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= v ) ) |
12 |
|
simpr |
|- ( ( x = u /\ y = v ) -> y = v ) |
13 |
12
|
a1i |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> y = v ) ) |
14 |
|
neeq2 |
|- ( y = v -> ( x =/= y <-> x =/= v ) ) |
15 |
14
|
biimprcd |
|- ( x =/= v -> ( y = v -> x =/= y ) ) |
16 |
11 13 15
|
syl6c |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= y ) ) |
17 |
|
sp |
|- ( A. x x = y -> x = y ) |
18 |
17
|
necon3ai |
|- ( x =/= y -> -. A. x x = y ) |
19 |
16 18
|
syl6 |
|- ( u =/= v -> ( ( x = u /\ y = v ) -> -. A. x x = y ) ) |
20 |
19
|
eximdv |
|- ( u =/= v -> ( E. x ( x = u /\ y = v ) -> E. x -. A. x x = y ) ) |
21 |
|
nfnae |
|- F/ x -. A. x x = y |
22 |
21
|
19.9 |
|- ( E. x -. A. x x = y <-> -. A. x x = y ) |
23 |
20 22
|
syl6ib |
|- ( u =/= v -> ( E. x ( x = u /\ y = v ) -> -. A. x x = y ) ) |
24 |
23
|
eximdv |
|- ( u =/= v -> ( E. y E. x ( x = u /\ y = v ) -> E. y -. A. x x = y ) ) |
25 |
8 24
|
syl5bi |
|- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> E. y -. A. x x = y ) ) |
26 |
|
nfnae |
|- F/ y -. A. x x = y |
27 |
26
|
19.9 |
|- ( E. y -. A. x x = y <-> -. A. x x = y ) |
28 |
25 27
|
syl6ib |
|- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> -. A. x x = y ) ) |
29 |
|
orc |
|- ( -. A. x x = y -> ( -. A. x x = y \/ u = v ) ) |
30 |
28 29
|
syl6 |
|- ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) ) |
31 |
7 30
|
pm2.61ine |
|- ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) |
32 |
5 31
|
impbii |
|- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) ) |