Metamath Proof Explorer


Theorem ax6e2ndeq

Description: "At least two sets exist" expressed in the form of dtru is logically equivalent to the same expressed in a form similar to ax6e if dtru is false implies u = v . ax6e2ndeq is derived from ax6e2ndeqVD . (Contributed by Alan Sare, 25-Mar-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion ax6e2ndeq
|- ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) )

Proof

Step Hyp Ref Expression
1 ax6e2nd
 |-  ( -. A. x x = y -> E. x E. y ( x = u /\ y = v ) )
2 ax6e2eq
 |-  ( A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) )
3 1 a1d
 |-  ( -. A. x x = y -> ( u = v -> E. x E. y ( x = u /\ y = v ) ) )
4 2 3 pm2.61i
 |-  ( u = v -> E. x E. y ( x = u /\ y = v ) )
5 1 4 jaoi
 |-  ( ( -. A. x x = y \/ u = v ) -> E. x E. y ( x = u /\ y = v ) )
6 olc
 |-  ( u = v -> ( -. A. x x = y \/ u = v ) )
7 6 a1d
 |-  ( u = v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) )
8 excom
 |-  ( E. x E. y ( x = u /\ y = v ) <-> E. y E. x ( x = u /\ y = v ) )
9 neeq1
 |-  ( x = u -> ( x =/= v <-> u =/= v ) )
10 9 biimprcd
 |-  ( u =/= v -> ( x = u -> x =/= v ) )
11 10 adantrd
 |-  ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= v ) )
12 simpr
 |-  ( ( x = u /\ y = v ) -> y = v )
13 12 a1i
 |-  ( u =/= v -> ( ( x = u /\ y = v ) -> y = v ) )
14 neeq2
 |-  ( y = v -> ( x =/= y <-> x =/= v ) )
15 14 biimprcd
 |-  ( x =/= v -> ( y = v -> x =/= y ) )
16 11 13 15 syl6c
 |-  ( u =/= v -> ( ( x = u /\ y = v ) -> x =/= y ) )
17 sp
 |-  ( A. x x = y -> x = y )
18 17 necon3ai
 |-  ( x =/= y -> -. A. x x = y )
19 16 18 syl6
 |-  ( u =/= v -> ( ( x = u /\ y = v ) -> -. A. x x = y ) )
20 19 eximdv
 |-  ( u =/= v -> ( E. x ( x = u /\ y = v ) -> E. x -. A. x x = y ) )
21 nfnae
 |-  F/ x -. A. x x = y
22 21 19.9
 |-  ( E. x -. A. x x = y <-> -. A. x x = y )
23 20 22 syl6ib
 |-  ( u =/= v -> ( E. x ( x = u /\ y = v ) -> -. A. x x = y ) )
24 23 eximdv
 |-  ( u =/= v -> ( E. y E. x ( x = u /\ y = v ) -> E. y -. A. x x = y ) )
25 8 24 syl5bi
 |-  ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> E. y -. A. x x = y ) )
26 nfnae
 |-  F/ y -. A. x x = y
27 26 19.9
 |-  ( E. y -. A. x x = y <-> -. A. x x = y )
28 25 27 syl6ib
 |-  ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> -. A. x x = y ) )
29 orc
 |-  ( -. A. x x = y -> ( -. A. x x = y \/ u = v ) )
30 28 29 syl6
 |-  ( u =/= v -> ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) ) )
31 7 30 pm2.61ine
 |-  ( E. x E. y ( x = u /\ y = v ) -> ( -. A. x x = y \/ u = v ) )
32 5 31 impbii
 |-  ( ( -. A. x x = y \/ u = v ) <-> E. x E. y ( x = u /\ y = v ) )